1 research outputs found

    Gravitational Lensing by Rotating Naked Singularities

    Full text link
    We model massive compact objects in galactic nuclei as stationary, axially-symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are a static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are function of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightingly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The point-like caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis--Newman--Winicour naked singularities.Comment: 35 pages, 30 figure
    corecore