8,383 research outputs found

    Shaping Pre-Service Teachers\u27 Attitudes: An Inquiry Approach to Course Reform

    Get PDF
    The purpose of the study was to investigate the development of pre-service teachers’ attitudes toward teaching science with inquiry methods as the result of their participation in the two-hour elementary science methods class. Southwestern Oklahoma State University is a partner in the Oklahoma Teacher Education Collaborative (OTEC) which is funded by the National Science Foundation’s reform effort, Collaboratives for Excellence in Teacher Preparation (CETP). The reform effort focuses on the revision of the teacher preparation courses with emphasis on a systemic change in the method in which math, science, and education methods courses are taught across Oklahoma. Nine Oklahoma universities, including the University of Tulsa, Oklahoma State University, the University of Central Oklahoma, Northeastern Oklahoma State University, Cameron University, Langston University, Tulsa Community College and Southwestern Oklahoma State University, have focused on revising the identified courses with inquiry-based instruction

    Solar system constraints on the Dvali-Gabadadze-Porrati braneworld theory of gravity

    Get PDF
    A number of proposals have been put forward to account for the observed accelerating expansion of the Universe through modifications of gravity. One specific scenario, Dvali-Gabadadze-Porrati (DGP) gravity, gives rise to a potentially observable anomaly in the solar system: all planets would exhibit a common anomalous precession, dw/dt, in excess of the prediction of General Relativity. We have used the Planetary Ephemeris Program (PEP) along with planetary radar and radio tracking data to set a constraint of |dw/dt| < 0.02 arcseconds per century on the presence of any such common precession. This sensitivity falls short of that needed to detect the estimated universal precession of |dw/dt| = 5e-4 arcseconds per century expected in the DGP scenario. We discuss the fact that ranging data between objects that orbit in a common plane cannot constrain the DGP scenario. It is only through the relative inclinations of the planetary orbital planes that solar system ranging data have sensitivity to the DGP-like effect of universal precession. In addition, we illustrate the importance of performing a numerical evaluation of the sensitivity of the data set and model to any perturbative precession.Comment: 9 pages, 2 figures, accepted for publication in Phys. Rev.

    Potential model calculations and predictions for heavy quarkonium

    Get PDF
    We investigate the spectroscopy and decays of the charmonium and upsilon systems in a potential model consisting of a relativistic kinetic energy term, a linear confining term including its scalar and vector relativistic corrections and the complete perturbative one-loop quantum chromodynamic short distance potential. The masses and wave functions of the various states are obtained using a variational technique, which allows us to compare the results for both perturbative and nonperturbative treatments of the potential. As well as comparing the mass spectra, radiative widths and leptonic widths with the available data, we include a discussion of the errors on the parameters contained in the potential, the effect of mixing on the leptonic widths, the Lorentz nature of the confining potential and the possible ccˉc\bar{c} interpretation of recently discovered charmonium-like states.Comment: Physical Review published versio

    Perturbation theory of the mass enhancement for a polaron coupled to acoustic phonons

    Full text link
    We use both a perturbative Green's function analysis and standard perturbative quantum mechanics to calculate the decrease in energy and the effective mass for an electron interacting with acoustic phonons. The interaction is between the difference in lattice displacements for neighbouring ions, and the hopping amplitude for an electron between those two sites. The calculations are performed in one, two, and three dimensions, and comparisons are made with results from other electron-phonon models. We also compute the spectral function and quasiparticle residue, as a function of characteristic phonon frequency. There are strong indications that this model is always polaronic on one dimension, where an unusual relation between the effective mass and the quasiparticle residue is also found.Comment: 9 pages, 5 figures, submitted to PR

    Io's radar properties

    Get PDF
    Arecibo 13 cm wavelength radar observations during 1987-90 have yielded echoes from Io on each of 11 dates. Whereas Voyager imaged parts of the satellite at resolutions of several km and various visible/infrared measurements have probed the surfaces's microscale properties, the radar data yield new information about the nature of the surface at cm to km scales. Our observations provide fairly thorough coverage and reveal significant heterogeneity in Io's radar properties. A figure is given showing sums of echo spectra from 11 dates

    Analytical solution of thermal magnetization on memory stabilizer structures

    Full text link
    We return to the question of how the choice of stabilizer generators affects the preservation of information on structures whose degenerate ground state encodes a classical redundancy code. Controlled-not gates are used to transform the stabilizer Hamiltonian into a Hamiltonian consisting of uncoupled single spins and/or pairs of spins. This transformation allows us to obtain an analytical partition function and derive closed form equations for the relative magnetization and susceptibility. These equations are in agreement with the numerical results presented in [arXiv:0907.0394v1] for finite size systems. Analytical solutions show that there is no finite critical temperature, Tc=0, for all of the memory structures in the thermodynamic limit. This is in contrast to the previously predicted finite critical temperatures based on extrapolation. The mismatch is a result of the infinite system being a poor approximation even for astronomically large finite size systems, where spontaneous magnetization still arises below an apparent finite critical temperature. We extend our analysis to the canonical stabilizer Hamiltonian. Interestingly, Hamiltonians with two-body interactions have a higher apparent critical temperature than the many-body Hamiltonian.Comment: 13 pages, 7 figures, analytical solutions of problems studied numerically in arXiv:0907.0394v1 [quant-ph
    • …
    corecore