34 research outputs found

    Magnetic Penetration Depth Measurements of Pr2−x_{2-x}Cex_xCuO4−δ_{4-\delta} Films on Buffered Substrates: Evidence for a Nodeless Gap

    Full text link
    We report measurements of the inverse squared magnetic penetration depth, λ−2(T)\lambda^{-2}(T), in Pr2−x_{2-x}Cex_{x}CuO4−δ_{4-\delta} (0.115≤x≤0.1520.115 \leq x \leq 0.152) superconducting films grown on SrTiO3_3 (001) substrates coated with a buffer layer of insulating Pr2_{2}CuO4_{4}. λ−2(0)\lambda^{-2}(0), TcT_c and normal-state resistivities of these films indicate that they are clean and homogeneous. Over a wide range of Ce doping, 0.124≤x≤0.1440.124\leq x \leq 0.144, λ−2(T)\lambda^{-2}(T) at low TT is flat: it changes by less than 0.15% over a factor of 3 change in TT, indicating a gap in the superconducting density of states. Fits to the first 5% decrease in λ−2(T)\lambda^{-2}(T) produce values of the minimum superconducting gap in the range of 0.29≤Δmin/kBTc≤1.010.29\leq\Delta_{\rm min}/k_BT_c\leq1.01.Comment: 4 pages 5 figure

    Evidence for a Bulk Complex Order-Parameter in Y0.9Ca0.1Ba2Cu3O7-delta Thin Films

    Full text link
    We have measured the penetration depth of overdoped Y0.9Ca0.1Ba2Cu3O7-delta (Ca-YBCO) thin films using two different methods. The change of the penetration depth as a function of temperature has been measured using the parallel plate resonator (PPR), while its absolute value was obtained from a quasi-optical transmission measurements. Both sets of measurements are compatible with an order parameter of the form: Delta*dx2-y2+i*delta*dxy, with Delta=14.5 +- 1.5 meV and delta=1.8 meV, indicating a finite gap at low temperature. Below 15 K the drop of the scattering rate of uncondensed carriers becomes steeper in contrast to a flattening observed for optimally doped YBCO films. This decrease supports our results on the penetration depth temperature dependence. The findings are in agreement with tunneling measurements on similar Ca-YBCO thin films.Comment: 11 pages, 4 figure

    Renormalization of the elementary excitations in hole- and electron-doped cuprates due to spin fluctuations

    Full text link
    Extending our previous studies we present results for the doping-, momentum-, frequency-, and temperature- dependence of the kink-like change of the quasiparticle velocity resulting from the coupling to spin fluctuations. In the nodal direction a kink is found in both the normal and superconducting state while in the antinodal direction a kink occurs only below TcT_c due to the opening of the superconducting gap. A pronounced kink is obtained only for hole-doped, but not for electron-doped cuprates and is characteristically different from what is expected due to electron-phonon interaction. We further demonstrate that the kink structure is intimately connected to the resonance peak seen in inelastic neutron scattering. Our results suggest similar effects in other unconventional superconductors like Sr2RuO4{Sr}_2{RuO}_4.Comment: revised version, 12 pages, 19 figures. accepted for publication in PR

    Evidence for a Nodeless Gap from the Superfluid Density of Optimally Doped Pr_{1.855}Ce_{0.145}CuO_{4-y} Films

    Full text link
    We present measurements of the ab-plane magnetic penetration depth, \lambda(T), in five optimally doped Pr_{1.855}Ce_{0.145}CuO_{4-y} films for 1.6 K \leq T \leq T_c \sim 24 K. Low resistivities, high superfluid densities n_s(T)\propto \lambda^{-2}(T), high T_c's, and small transition widths are reproducible and indicative of excellent film quality. For all five films, \lambda^{-2}(T)/\lambda^{-2}(0) at low T is well fitted by an exponential temperature dependence with a gap, \Delta_{min}, of 0.85 k_B T_c. This behavior is consistent with a nodeless gap and is incompatible with d-wave superconductivity.Comment: 5 pages, 4 figures, reorganized for clarit

    Magnetic Field Dependence of Electronic Specific Heat in Pr_{1.85} Ce_{0.15} CuO_4

    Full text link
    The specific heat of electron-doped Pr_{1.85} Ce_{0.15} CuO_4 single crystals is reported for the temperature range 2 - 10 K and magnetic field range 0 - 10 T. A non-linear magnetic field dependence is observed for the field range 0 - 2 T. Our data supports a model with lines of nodes in the gap function of these superconductors. Theoretical calculations of the electronic specific heat for dirty d-wave, clean d-wave, and s-wave symmetries are compared to our data.Comment: 10 pages Latex and 4 eps figures, submitted to Phys. Rev.

    Strongly correlated s-wave pairing in the n-type infinite-layer cuprate

    Get PDF
    Quasiparticle tunneling spectra of the electron-doped (n-type) infinite-layer cuprate Sr_{0.9}La_{0.1}CuO_2 reveal characteristics that counter a number of common phenomena in the hole-doped (p-type) cuprates. The optimally doped Sr_{0.9}La_{0.1}CuO_2 with T_c = 43 K exhibits a momentum-independent superconducting gap \Delta = 13.0 +- 1.0 meV that substantially exceeds the BCS value, and the spectral characteristics indicate insignificant quasiparticle damping by spin fluctuations and the absence of pseudogap. The response to quantum impurities in the Cu-sites also differs fundamentally from that of the p-type cuprates with d_{x^2-y^2}-wave pairing symmetry.Comment: 4 pages, 3 figures. Published in Physical Review Letter. Corresponding author: Nai-Chang Yeh (e-mail: [email protected]

    Hot Spots and Transition from d-Wave to Another Pairing Symmetry in the Electron-Doped Cuprate Superconductors

    Full text link
    We present a simple theoretical explanation for a transition from d-wave to another superconducting pairing observed in the electron-doped cuprates. The d_{x^2-y^2} pairing potential Delta, which has the maximal magnitude and opposite signs at the hot spots on the Fermi surface, becomes suppressed with the increase of electron doping, because the hot spots approach the Brillouin zone diagonals, where Delta vanishes. Then, the d_{x^2-y^2} pairing is replaced by either singlet s-wave or triplet p-wave pairing. We argue in favor of the latter and discuss experiments to uncover it.Comment: 6 pages, 4 figures, RevTeX 4. V.2: Extra figure and many references added. V.3: Minor update of references for the proof

    Point contact spectroscopy of the electron-doped cuprate superconductor Pr{2-x}Ce{x}CuO4: The dependence of conductance-voltage spectra on cerium doping, barrier strength and magnetic field

    Full text link
    We present conductance-voltage (G-V) data for point contact junctions between a normal metal and the electron doped cuprate superconductor Pr{2-x}Ce{x}CuO4 (PCCO). We observe a zero bias conductance peak (ZBCP) for the under-doped composition of this cuprate (x=0.13) which is consistent with d-wave pairing symmetry. For optimally-doped (x=0.15) and over-doped (x=0.17) PCCO, we find that the G-V characteristics indicate the presence of an order parameter without nodes. We investigate this further by obtaining point contact spectroscopy data for different barrier strengths and as a function of magnetic field.Comment: 13 pages, 9 figure

    Doping dependence of the gap anisotropy in LCCO studied by millimeter-wave spectroscopy

    Full text link
    We measure the penetration depth of optimally doped and underdoped La2-xCexCuO4 in the millimeter frequency domain (4 - 7 cm-1) and for temperatures 2 K < T < 300 K. The penetration depth as function of temperature reveals significant changes on electron doping. It shows quadratic temperature dependence in underdoped samples, but increases almost exponentially at optimal doping. Significant changes in the gap anisotropy (or even in the gap symmetry) may account for this transition.Comment: 4 pages, 4 figure
    corecore