4 research outputs found

    Escherichia coli O157 infection associated with a petting zoo.

    No full text
    A young child was admitted to hospital with haemolytic-uraemic syndrome caused by infection with a Shiga toxin 2-producing strain of Escherichia coli (STEC) O157. Five days before he became ill, the child had visited a small petting zoo. STEC O157 strains were isolated from faecal samples from goats and sheep housed on the farm. The human and the animal isolates were indistinguishable by molecular subtyping. The petting zoo voluntarily closed temporarily to prevent further cases of infection. Two out of 11 other, randomly selected petting zoos (including one deer park) visited subsequently, tested positive. Furthermore, during the study period there was one more notification of STEC O157 infection possibly linked with a farm visit. Although STEC O157 was indeed found in the petting zoo associated with this patient, transmission through animal contact could not be confirmed because the human isolate was not available for subtyping. The case study and the results of the other on-farm investigations highlight the risk of acquiring severe zoonotic infections during visits to petting zoos

    Occurrence of Verocytotoxin-Producing Escherichia coli O157 on Dutch Dairy Farms

    No full text
    During the period from September 1996 through November 1996, 10 Dutch dairy farms were visited to collect fecal samples from all cattle present. The samples were examined for the presence of verocytotoxin (VT)-producing Escherichia coli (VTEC) of serogroup O157 (O157 VTEC) by immunomagnetic separation following selective enrichment. Cattle on 7 of the 10 dairy farms tested positive for O157 VTEC, with the proportion of cattle infected varying from 0.8 to 22.4%. On the seven farms positive for O157 VTEC, the excretion rate was highest in calves ages 4 to 12 months (21.2%). In a follow-up study, two O157 VTEC-positive farms and two O157 VTEC-negative farms identified in the prevalence study were revisited five times at intervals of approximately 3 months. Cattle on each farm tested positive at least once. The proportion of cattle infected varied from 0 to 61.0%. Excretion rates peaked in summer and were lowest in winter. Again, the highest prevalence was observed in calves ages 4 to 12 months (11.8%). O157 VTEC strains were also isolated from fecal samples from horses, ponies, and sheep and from milk filters and stable flies. O157 VTEC isolates were characterized by VT production and type, the presence of the E. coli attaching-and-effacing gene, phage type, and pulsed-field gel electrophoretic genotype. No overlapping strain types were identified among isolates from different farms except one. The predominance of a single type at each sampling suggests that horizontal transmission is an important factor in dissemination of O157 VTEC within a farm. The presence of more than one strain type, both simultaneously and over time, suggests that there was more than one source of O157 VTEC on the farms. Furthermore, this study demonstrated that the O157 VTEC status of a farm cannot be ascertained from a single visit testing a small number of cattle

    Public farms: hygiene and zoonotic agents

    No full text
    In three successive years, we visited petting farms (n=132), care farms (n=91), and farmyard campsites (n=84), respectively, and completed a standard questionnaire with the objective of determining the hygienic status of these farms and describing hygiene measures implemented to reduce the risk of transmission of zoonotic agents from the animals to humans. For at least 85% of the farms, the overall impression of hygiene was recorded as good. However, more attention must be paid to: informing visitors on hygiene and handwashing, provision of handwashing facilities, and a footwear cleaning facility. Examination of samples of freshly voided faeces resulted in the detection of Shiga toxin-producing Escherichia coli O157 and/or Salmonella spp. and/or Campylobacter spp. at almost two-thirds (64路9%) of the petting farms, and around half of the care farms (56路0%) and farmyard campsites (45路2%). These data reinforce the need for control measures for both public and private farms to reduce human exposure to livestock faeces and thus the risk of transmission of zoonotic diseases. Public awareness of the risk associated with handling animals or faecal material should be increased
    corecore