195 research outputs found
Experimental Investigation of the Momentum Method for Determining Profile Drag
Report presents the results of an experimental investigation conducted in the full-scale tunnel to determine the accuracy of the Jones and the Betz equations for computing profile drag from total and static pressure surveys in the wake of wings. Surveys were made behind 6 by 8-foot airfoils of the NACA 0009, and 0018 sections at zero lift and behind the NACA 0012 at positive lifts. The surveys were made at various spanwise positions and at distances behind the airfoil ranging from 0.05c to 3.00c
Comparison of Profile-drag and Boundary-layer Measurements Obtained in Flight and in the Full-scale Wind Tunnel
The effect of the existing turbulence in the full scale tunnel was determined from measurements of the profile drag of an N-22 section by the momentum method under corresponding conditions in flight and the tunnel. The transition-point location on the upper surface of the air-foil was also determined from velocity surveys in the boundary layer. The measurements were made at section lift coefficients from 0.480 to 0.635 with a range of Reynolds Numbers from 4,600,000 to 3,900,000. The results show that the end of transition occurs at approximately the same point on the airfoil in flight and in the tunnel. The transition region was somewhat broader in the tunnel and started farther forward than in flight. The laminar profiles in the tunnel had some characteristics of transition profiles in the tunnel and had a much steeper slope near the surface than did the laminar profiles obtained in flight. These differences, however, caused an increase of only 0.0001 in the profile-drag coefficients, as determined by the momentum method
Effects of Elevator Nose Shape, Gap, Balance, and Tabs on the Aerodynamic Characteristics of a Horizontal Tail Surface
Results are presented showing the effects of gap, elevator, nose shape, balance, cut-out, and tabs on the aerodynamic characteristics of a horizontal tail surface tested in the NACA full-scale tunnel
Effect of Tilt of the Propeller Axis on the Longitudinal-stability Characteristics of Single-Engine Airplanes
Report presents the results of tests of a model of a single-engine airplane with two different tilts of the propeller axis. The results indicate that on a typical design a 5 degree downward tilt of the propeller axis will considerably reduce the destabilization effects of power. A comparison of the experimental results with those computed by use of existing theory is included. A comparison of the experimental results with those computed by use of existing theory is included. It is shown that the results can be predicted with an accuracy acceptable for preliminary design purposes, particularly at the higher powers where the effects are of significant magnitude
Tests of NACA 0009, 0012, and 0018 Airfoils in the Full-Scale Tunnel
An investigation was conducted in the NACA full-scale wind tunnel to determine the aerodynamic characteristics of the NACA 0009, 0012, and 0018 airfoils, with the ultimate purpose of providing data to be used as a basis for comparison with other wind-tunnel data, mainly in the study of scale and turbulence effects. Three symmetrical 6 by 36-foot rectangular airfoils were used. The Reynolds number range for minimum drag was form 1,800,000 to 7,000,000 and for maximum lift, from 1,700,000 to 4,500,000. The effect of rounded tips was determined for each of the airfoils. Tests were also made of the NACA 0012 airfoil equipped with a 0.20c full-span split flap hinged at 0.80c. Tuft surveys were included to show the progressive breakdown of flow near maximum lift. Momentum surveys were made in conjunction with force measurements at zero lift as an aid in converting force-test data to section coefficients
Wind-Tunnel Procedure for Determination of Critical Stability and Control Characteristics of Airplanes
This report outlines the flight conditions that are usually critical in determining the design of components of an airplane which affect its stability and control characteristics. The wind-tunnel tests necessary to determine the pertinent data for these conditions are indicated, and the methods of computation used to translate these data into characteristics which define the flying qualities of the airplane are illustrated
Dynamics and Radiation of Young Type-Ia Supernova Remnants: Important Physical Processes
We examine and analyze the physical processes that should be taken into
account when modeling young type-Ia SNRs, with ages of several hundred years.
It is shown, that energy losses in the metal-rich ejecta can be essential for
remnants already at this stage of evolution. The influence of electron thermal
conduction and the rate of the energy exchange between electrons and ions on
the temperature distribution and the X-radiation from such remnants is studied.
The data for Tycho SNR from the XMM-Newton X-ray telescope have been employed
for the comparison of calculations with observations.Comment: 19 pages, 8 figure
- …