662 research outputs found

    Magnus force and acoustic Stewart-Tolman effect in type II superconductors

    Full text link
    At zero magnetic field we have observed an electromagnetic radiation from superconductors subjected by a transverse elastic wave. This radiation has an inertial origin, and is a manifestation of the acoustic Stewart-Tolman effect. The effect is used for implementing a method of measurement of an effective Magnus force in type II superconductors. The method does not require the flux flow regime and allows to investigate this force for almost the whole range of the existence of the mixed state. We have studied behavior of the gyroscopic force in nonmagnetic borocarbides and Nb. It is found that in borocarbides the sign of the gyroscopic force in the mixed state is the same as in the normal state, and its value (counted for one vortex of unit length) has only a weak dependence on the magnetic field. In Nb the change of sign of the gyroscopic force under the transition from the normal to the mixed state is observed.Comment: 4 pages, 5 figure

    Scaling up social businesses in developing markets

    Get PDF
    Most of the world's poor live in developing markets and face unmet needs in core areas such as education, health, energy, sanitation and financial services. This offers businesses a vast opportunity for growth as these economies emerge from low-income to middle-income status. Social businesses in particular address a social need while generating profits typically reinvested into the business itself, but there is limited understanding of the ways through which social businesses achieve scale. This paper investigates how social businesses can scale up. First, we define scaling up as “increasing the number of customers or members of a business as well as expanding its offer and maximising its revenues until it reaches millions of people.” Second, using three in-depth case studies of social businesses that successfully scaled up according to these definitions, BRAC, Aravind and Amul, we identify scaling up strategies for social businesses. We identified market penetration, market development, product development and diversification as key strategies at different stages of business maturity. We find that there are two ways of increasing income generated that are linked to these four strategies: increasing revenue per stream and diversifying revenue streams. Our findings give insight to companies aiming to pursue social businesses and adds to the sparse literature on scaling up social businesses. A fruitful future research avenue would be to investigate the best sequence for applying these scaling strategies across companies and sectors over time

    Ballistic magnon transport and phonon scattering in the antiferromagnet Nd2_2CuO4_4

    Full text link
    The thermal conductivity of the antiferromagnet Nd2_2CuO4_4 was measured down to 50 mK. Using the spin-flop transition to switch on and off the acoustic Nd magnons, we can reliably separate the magnon and phonon contributions to heat transport. We find that magnons travel ballistically below 0.5 K, with a thermal conductivity growing as T3T^3, from which we extract their velocity. We show that the rate of scattering of acoustic magnons by phonons grows as T3T^3, and the scattering of phonons by magnons peaks at twice the average Nd magnon frequency.Comment: 4 pages, 3 figures, one figure modifie

    Low-temperature phonon thermal conductivity of cuprate single crystals

    Full text link
    The effect of sample size and surface roughness on the phonon thermal conductivity κp\kappa_p of Nd2_2CuO4_4 single crystals was studied down to 50 mK. At 0.5 K, κp\kappa_p is proportional to A\sqrt{A}, where AA is the cross-sectional area of the sample. This demonstrates that κp\kappa_p is dominated by boundary scattering below 0.5 K or so. However, the expected T3T^3 dependence of κp\kappa_p is not observed down to 50 mK. Upon roughing the surfaces, the T3T^3 dependence is restored, showing that departures from T3T^3 are due to specular reflection of phonons off the mirror-like sample surfaces. We propose an empirical power law fit, to κpTα\kappa_p \sim T^{\alpha} (where α<3\alpha < 3) in cuprate single crystals. Using this method, we show that recent thermal conductivity studies of Zn doping in YBa2_2Cu3_3Oy_y re-affirm the universal heat conductivity of d-wave quasiparticles at T0T \to 0.Comment: 4 pages, 4 figure

    CULINARY DESTINATIONS OF FRENCH AND MONACCO NATION IN GASTRONOMIC TOURISMI

    Get PDF
    From an organizational point of view, culinary tourism involves features of local food production technologies, their history and traditions consumption, as well as possible tourist participation in the preparation of national dishes, visit culinary festivals and contests. Gastronomic tourism can also be considered an auxiliary tool in the knowledge of the cultural heritage of countries and regions of the world, since national cuisine is one of the elements that reflects the lifestyle, outlook, ethnic traditions. The phenomenon, which today is called to be called culinary tourism, is rooted in the distant past. As an example many centuries ago, merchants committed to purchase travel for different sweets, spices, wines and various beverages.The purpose of the article’s research is to to explore the national identity of the French cuisine and the principality of Monaco. To achieve the goal we set the task of denoting the culinary borders of a nation, traditions, habits and culinary preferences, origin of dishes, their recipes. Make a grammatical analysis of the recipe text in the context of culinary discourse. Show the transformation of the culinary ideas of the French cuisine and the principality of the Monaco kitchen and how culinary discourse is reflected in the process of national formation identity

    Stationary waves in a superfluid exciton gas in quantum Hall bilayers

    Full text link
    Stationary waves in a superfluid magnetoexciton gas in nu = 1 quantum Hall bilayers are considered. The waves are induced by counter-propagating electrical currents that flow in a system with a point obstacle. It is shown that stationary waves can emerge only in imbalanced bilayers in a certain diapason of currents. It is found that the stationary wave pattern is modified qualitatively under a variation of the ratio of the interlayer distance to the magnetic length d/l. The advantages of use graphene-dielectric-graphene sandwiches for the observation of stationary waves are discussed. We determine the range of parameters (the dielectric constant of the layer that separates two graphene layers and the ratio d/l) for which the state with superfluid magnetoexcitons can be realized in such sandwiches. Typical stationary wave patterns are presented as density plotsComment: 17 pages, 8 figure

    Nonlinear absorption of surface acoustic waves by composite fermions

    Full text link
    Absorption of surface acoustic waves by a two-dimensional electron gas in a perpendicular magnetic field is considered. The structure of such system at the filling factor ν\nu close to 1/2 can be understood as a gas of {\em composite fermions}. It is shown that the absorption at ν=1/2\nu =1/2 can be strongly nonlinear, while small deviation form 1/2 will restore the linear absorption. Study of nonlinear absorption allows one to determine the force acting upon the composite fermions from the acoustic wave at turning points of their trajectories.Comment: 7 pages, 1 figure, submitted to Europhysics letter

    Exciton Condensation and Perfect Coulomb Drag

    Get PDF
    Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, bilayer two-dimensional electron systems can support an exciton condensate consisting of electrons in one layer tightly bound to holes in the other. One thus expects "perfect" drag; a transport current of electrons driven through one layer is accompanied by an equal one of holes in the other. (The electrical currents are therefore opposite in sign.) Here we demonstrate just this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure

    Direct observation of micron-scale ordered structure in a two-dimensional electron system

    Full text link
    We have applied a novel scanned probe method to directly resolve the interior structure of a GaAs/AlGaAs two-dimensional electron system in a tunneling geometry. We find that the application of a perpendicular magnetic field can induce surprising density modulations that are not static as a function of the field. Near six and four filled Landau levels, stripe-like structures emerge with a characteristic wave length ~2 microns. Present theories do not account for ordered density modulations on this length scale.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Density Induced Interchange of Anisotropy Axes at Half-Filled High Landau Levels

    Full text link
    We observe density induced 90^{\circ} rotations of the anisotropy axes in transport measurements at half-filled high Landau levels in the two dimensional electron system, where stripe states are proposed (ν\nu=9/2, 11/2, etc). Using a field effect transistor, we find the transition density to be 2.9×10112.9\times10^{11}cm2^{-2} at ν\nu=9/2. Hysteresis is observed in the vicinity of the transition. We construct a phase boundary in the filling factor-magnetic field plane in the regime 4.4<ν<4.64.4<\nu<4.6. An in-plane magnetic field applied along either anisotropy axis always stabilizes the low density orientation of the stripes.Comment: 1 revtex file, 3 eps figure
    corecore