40,357 research outputs found

    SU(5) Heterotic Standard Model Bundles

    Full text link
    We construct a class of stable SU(5) bundles on an elliptically fibered Calabi-Yau threefold with two sections, a variant of the ordinary Weierstrass fibration, which admits a free involution. The bundles are invariant under the involution, solve the topological constraint imposed by the heterotic anomaly equation and give three generations of Standard Model fermions after symmetry breaking by Wilson lines of the intermediate SU(5) GUT-group to the Standard Model gauge group. Among the solutions we find some which can be perturbed to solutions of the Strominger system. Thus these solutions provide a step toward the construction of phenomenologically realistic heterotic flux compactifications via non-Kahler deformations of Calabi-Yau geometries with bundles. This particular class of solutions involves a rank two hidden sector bundle and does not require background fivebranes for anomaly cancellation.Comment: 17 page

    Two-component model for the chemical evolution of the Galactic disk

    Get PDF
    In the present paper, we introduce a two-component model of the Galactic disk to investigate its chemical evolution. The formation of the thick and thin disks occur in two main accretion episodes with both infall rates to be Gaussian. Both the pre-thin and post-thin scenarios for the formation of the Galactic disk are considered. The best-fitting is obtained through χ2\chi^2-test between the models and the new observed metallicity distribution function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results show that post-thin disk scenario for the formation of the Galactic disk should be preferred. Still, other comparison between model predictions and observations are given.Comment: 23 pages, 7 figure

    Microwave-induced resistance oscillations in a back-gated GaAs quantum well

    Full text link
    We performed effective mass measurements employing microwave-induced resistance oscillation in a tunable-density GaAs/AlGaAs quantum well. Our main result is a clear observation of an effective mass increase with decreasing density, in general agreement with earlier studies which investigated the density dependence of the effective mass employing Shubnikov- de Haas oscillations. This finding provides further evidence that microwave-induced resistance oscillations are sensitive to electron-electron interactions and offer a convenient and accurate way to obtain the effective mass.Comment: 4 pages, 4 figure

    Modelling and control of the flame temperature distribution using probability density function shaping

    Get PDF
    This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained

    Presynaptic GABA B receptor regulates activity-dependent maturation and patterning of inhibitory synapses through dynamic allocation of synaptic vesicles

    Get PDF
    Accumulating evidence indicate that GABA regulates activity-dependent development of inhibitory synapses in the vertebrate brain, but the underlying mechanisms remain unclear. Here we combined live imaging of cortical GABAergic axons with single cell genetic manipulation to dissect the role of presynaptic GABA(B) receptors (GABA(B)Rs) in inhibitory synapse formation in mouse. Developing GABAergic axons form a significant number of transient boutons but only a subset was stabilized. Synaptic vesicles in these nascent boutons are often highly mobile in the course of tens of minutes. Activation of presynaptic GABA(B)Rs stabilized mobile vesicles in nascent boutons through the local enhancement of actin polymerization. Inactivation of GABA(B)Rs in developing basket interneurons resulted in aberrant pattern of bouton size distribution, reduced bouton density and reduced axon branching, as well as reduced frequency of miniature inhibitory currents in postsynaptic pyramidal neurons. These results suggest that GABA(B)Rs along developing inhibitory axons act as a local sensor of GABA release and promote presynaptic maturation through increased recruitment of mobile vesicle pools. Such release-dependent validation and maturation of nascent terminals is well suited to sculpt the pattern of synapse formation and distribution along axon branches

    Screw-pitch effect and velocity oscillation of domain-wall in ferromagnetic nanowire driven by spin-polarized current

    Full text link
    We investigate the dynamics of domain wall in ferromagnetic nanowire with spin-transfer torque. The critical current condition is obtained analytically. Below the critical current, we get the static domain wall solution which shows that the spin-polarized current can't drive domain wall moving continuously. In this case, the spin-transfer torque plays both the anti-precession and anti-damping roles, which counteracts not only the spin-precession driven by the effective field but also Gilbert damping to the moment. Above the critical value, the dynamics of domain wall exhibits the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width, respectively. Both the theoretical analysis and numerical simulation demonstrate that this novel phenomenon arise from the conjunctive action of Gilbert-damping and spin-transfer torque. We also find that the roles of spin-transfer torque are entirely contrary for the cases of below and above the critical current
    corecore