17,889 research outputs found

    Gravitational energy from a combination of a tetrad expression and Einstein's pseudotensor

    Full text link
    The energy-momentum for a gravitating system can be considered by the tetard teleparalle gauge current in orthonormal frames. Whereas the Einstein pseudotensor used holonomic frames. Tetrad expression itself gives a better result for gravitational energy than Einstein's. Inspired by an idea of Deser, we found a gravitational energy expression which enjoys the positive energy property by combining the tetrad expression and the Einstein pseudotensor, i.e., the connection coefficient has a form appropriate to a suitable intermediate between orthonormal and holonomic frames.Comment: 5 page

    Designing nanophotonic structures using conditional deep convolutional generative adversarial networks

    Get PDF
    Data-driven design approaches based on deep learning have been introduced in nanophotonics to reduce time-consuming iterative simulations, which have been a major challenge. Here, we report the first use of conditional deep convolutional generative adversarial networks to design nanophotonic antennae that are not constrained to predefined shapes. For given input reflection spectra, the network generates desirable designs in the form of images; this allows suggestions of new structures that cannot be represented by structural parameters. Simulation results obtained from the generated designs agree well with the input reflection spectrum. This method opens new avenues toward the development of nanophotonics by providing a fast and convenient approach to the design of complex nanophotonic structures that have desired optical properties.11Ysciescopu

    Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors

    Full text link
    The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is for determining the gravitational energy. Neither of them can guarantee a positive energy in holonomic frames. In the small sphere approximation, it has been required that the quasilocal expression for the gravitational energy-momentum density should be proportional to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}. However, we propose a new tensor VαβμνV_{\alpha\beta\mu\nu} which is the sum of certain tensors SαβμνS_{\alpha\beta\mu\nu} and KαβμνK_{\alpha\beta\mu\nu}, it has certain properties so that it gives the same gravitational "energy-momentum" content as BαβμνB_{\alpha\beta\mu\nu} does. Moreover, we show that a modified Einstein pseudotensor turns out to be one of the Chen-Nester quasilocal expressions, while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou pseudotensor; these two modified pseudotensors have positive gravitational energy in a small region.Comment:

    Neural Network Model for Apparent Deterministic Chaos in Spontaneously Bursting Hippocampal Slices

    Full text link
    A neural network model that exhibits stochastic population bursting is studied by simulation. First return maps of inter-burst intervals exhibit recurrent unstable periodic orbit (UPO)-like trajectories similar to those found in experiments on hippocampal slices. Applications of various control methods and surrogate analysis for UPO-detection also yield results similar to those of experiments. Our results question the interpretation of the experimental data as evidence for deterministic chaos and suggest caution in the use of UPO-based methods for detecting determinism in time-series data.Comment: 4 pages, 5 .eps figures (included), requires psfrag.sty (included

    Molecular transistor coupled to phonons and Luttinger-liquid leads

    Full text link
    We study the effects of electron-phonon interactions on the transport properties of a molecular quantum dot coupled to two Luttinger-liquid leads. In particular, we investigate the effects on the steady state current and DC noise characteristics. We consider both equilibrated and unequilibrated on-dot phonons. The density matrix formalism is applied in the high temperature approximation and the resulting semi-classical rate equation is numerically solved for various strengths of electron-electron interactions in the leads and electron-phonon coupling. The current and the noise are in general smeared out and suppressed due to intralead electron interaction. On the other hand, the Fano factor, which measures the noise normalized by the current, is more enhanced as the intralead interaction becomes stronger. As the electron-phonon coupling becomes greater than order one, the Fano factor exhibits super-Poissonian behaviour.Comment: 11 pages, 11 figure

    New positive small vacuum region gravitational energy expressions

    Full text link
    We construct an infinite number of new holonomic quasi-local gravitational energy-momentum density pseudotensors with good limits asymptotically and in small regions, both materially and in vacuum. For small vacuum regions they are all a positive multiple of the Bel-Robinson tensor and consequently have positive energy.Comment: 4 page

    Excited D-branes and Supergravity Solutions

    Full text link
    We investigate the general solution with the symmetry ISO(1,p)xSO(9-p) of Type II supergravity (the three-parameter solution) from the viewpoint of the superstring theory. We find that one of the three parameters (c_1) is closely related to the ``dilaton charge'' and the appearance of the dilaton charge is a consequence of deformations of the boundary condition from that of the boundary state for BPS D-branes. We give three examples of the deformed D-branes by considering the tachyon condensation from systems of D-\bar{D}p-branes, unstable D9-branes and unstable D-instantons to the BPS saturated Dp-branes, respectively. We argue that the deformed systems are generally regarded as tachyonic and/or massive excitations of the open strings on Dp-\bar{D}p-brane systems.Comment: 29 pages, 6 figures, LaTeX2e, typos corrected, references adde

    Numerical estimation on free electrons generated by shielded radioactive materials under various gaseous environments

    Get PDF
    We report simulation results on generation of free electrons due to the presence of radioactive materials under controlled pressure and gases using a general Monte Carlo transport code (MCNPX). A radioactive material decays to lower atomic number, simultaneously producing high energy gamma rays that can generate free electrons via various scattering mechanisms. This paper shows detailed simulation works for answering how many free electrons can be generated under the existence of shielded radioactive materials as a function of pressure and types of gases.open0

    Nonequilibrium quantum criticality in open electronic systems

    Full text link
    A theory is presented of quantum criticality in open (coupled to reservoirs) itinerant electron magnets, with nonequilibrium drive provided by current flow across the system. Both departures from equilibrium at conventional (equilibrium) quantum critical points and the physics of phase transitions induced by the nonequilibrium drive are treated. Nonequilibrium-induced phase transitions are found to have the same leading critical behavior as conventional thermal phase transitions.Comment: 5 pages, 1 figur
    corecore