76,233 research outputs found

    Collective motions of a quantum gas confined in a harmonic trap

    Full text link
    Single-component quantum gas confined in a harmonic potential, but otherwise isolated, is considered. From the invariance of the system of the gas under a displacement-type transformation, it is shown that the center of mass oscillates along a classical trajectory of a harmonic oscillator. It is also shown that this harmonic motion of the center has, in fact, been implied by Kohn's theorem. If there is no interaction between the atoms of the gas, the system in a time-independent isotropic potential of frequency νc\nu_c is invariant under a squeeze-type unitary transformation, which gives collective {\it radial} breathing motion of frequency 2νc2\nu_c to the gas. The amplitudes of the oscillating and breathing motions from the {\it exact} invariances could be arbitrarily large. For a Fermi system, appearance of 2νc2\nu_c mode of the large breathing motion indicates that there is no interaction between the atoms, except for a possible long-range interaction through the inverse-square-type potential.Comment: Typos in the printed verions are correcte

    Quark Orbital Angular Momentum in the Baryon

    Full text link
    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor κ\kappa and the chiral splitting probability aa is shown. The cancellation between the spin and orbital contributions in the spin sum rule and in the baryon magnetic moments is discussed.Comment: 26 pages, 3 figures, revised version with minor eq. no and ref. no. corrections. Discussion on the Λ\Lambda spin and a new ref. are adde

    The geometrically-averaged density of states as a measure of localization

    Full text link
    Motivated by current interest in disordered systems of interacting electrons, the effectiveness of the geometrically averaged density of states, ρg(ω)\rho_g(\omega), as an order parameter for the Anderson transition is examined. In the context of finite-size systems we examine complications which arise from finite energy resolution. Furthermore we demonstrate that even in infinite systems a decline in ρg(ω)\rho_g(\omega) with increasing disorder strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure

    Monolithic arrays of surface emitting laser NOR logic devices

    Get PDF
    Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input

    Geometric Phase, Hannay's Angle, and an Exact Action Variable

    Full text link
    Canonical structure of a generalized time-periodic harmonic oscillator is studied by finding the exact action variable (invariant). Hannay's angle is defined if closed curves of constant action variables return to the same curves in phase space after a time evolution. The condition for the existence of Hannay's angle turns out to be identical to that for the existence of a complete set of (quasi)periodic wave functions. Hannay's angle is calculated, and it is shown that Berry's relation of semiclassical origin on geometric phase and Hannay's angle is exact for the cases considered.Comment: Submitted to Phys. Rev. Lett. (revised version

    Sea flavor content of octet baryons and intrinsic five-quark Fock states

    Full text link
    Sea quark contents of the octet baryons are investigated by employing an extended chiral constituent quark approach, which embodies higher Fock five-quark components in the baryons wave-functions. The well-known flavor asymmetry of the nucleon sea dˉuˉ\bar{d}-\bar{u}, is used as input to predict the probabilities of uˉ\bar{u}, dˉ\bar{d} and sˉ\bar{s} in the nucleon, Λ\Lambda, Σ\Sigma and Ξ\Xi baryons, due to the intrinsic five-quark components in the baryons wave functions.Comment: 22 page

    Monolithic arrays of surface emitting laser NOR logic devices

    Get PDF
    Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input

    Deep Discrete Hashing with Self-supervised Pairwise Labels

    Full text link
    Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, which require labels. In this paper, we propose a novel unsupervised deep hashing method, named Deep Discrete Hashing (DDH), for large-scale image retrieval and classification. In the proposed framework, we address two main problems: 1) how to directly learn discrete binary codes? 2) how to equip the binary representation with the ability of accurate image retrieval and classification in an unsupervised way? We resolve these problems by introducing an intermediate variable and a loss function steering the learning process, which is based on the neighborhood structure in the original space. Experimental results on standard datasets (CIFAR-10, NUS-WIDE, and Oxford-17) demonstrate that our DDH significantly outperforms existing hashing methods by large margin in terms of~mAP for image retrieval and object recognition. Code is available at \url{https://github.com/htconquer/ddh}
    corecore