18,997 research outputs found

    Photon-meson transition form factors of light pseudoscalar mesons

    Full text link
    The photon-meson transition form factors of light pseudoscalar mesons π0\pi ^{0}, η\eta, and η\eta ^{\prime} are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low Q2Q^{2} and is also physically in accordance with the light-cone pQCD approach at large Q2Q^{2}. The calculated results agree with the available experimental data at high energy scale. We also predict the low Q2Q^{2} behaviors of the photon-meson transition form factors of π0\pi ^{0}, η\eta and η\eta ^{\prime }, which are measurable in e+A(Nucleus)e+A+Me+A({Nucleus})\to e+A+M process via Primakoff effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR

    Quantum criticality and state engineering in the simulated anisotropic quantum Rabi model

    Full text link
    Promising applications of the anisotropic quantum Rabi model (AQRM) in broad parameter ranges are explored, which is realized with superconducting flux qubits simultaneously driven by two-tone time-dependent magnetic fields. Regarding the quantum phase transitions (QPTs), with assistant of fidelity susceptibility, we extract the scaling functions and the critical exponents, with which the universal scaling of the cumulant ratio is captured with rescaling of the parameters due to the anisotropy. Moreover, a fixed point of the cumulant ratio is predicted at the critical point of the AQRM. In respect to quantum information tasks, the generation of the macroscopic Schr\"{o}dinger cat states and quantum controlled phase gates are investigated in the degenerate case of the AQRM, whose performance is also investigated by numerical calculation with practical parameters. Therefore, our results pave a way to explore distinct features of the AQRM in circuit QED systems for QPTs, quantum simulations and quantum information processings.Comment: 17 pages, 7 figure

    Implementing topological quantum manipulation with superconducting circuits

    Full text link
    A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capacitively coupled chains of superconducting devices. In particular, we elaborate how to achieve the wanted operations to create and manipulate the topological quantum states, providing an experimentally feasible scenario to access the topological memory and to build the anyonic interferometry.Comment: 4 pages with 3 figures; V2: published version with minor updation

    A new 111 type iron pnictide superconductor LiFeP

    Full text link
    A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arsenic. The new superconductor is featured with itinerant behavior at normal state that could helpful to understand the novel superconducting mechanism of iron pnictide compounds.Comment: 3 figures + 1 tabl

    Interlayer tunneling in double-layer quantum Hall pseudo-ferromagnets

    Full text link
    We show that the interlayer tunneling I--V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a ``derivative'' feature at VB(B)=2πvBd/eϕ0V_B(B_{||})=2\pi\hbar v B_{||}d/e\phi_0, which gives a direct measure of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.Comment: 4 pgs. RevTex, submitted to Phys. Rev. Let

    New Terms for the Compact Form of Electroweak Chiral Lagrangian

    Full text link
    The compact form of the electroweak chiral Lagrangian is a reformulation of its original form and is expressed in terms of chiral rotated electroweak gauge fields, which is crucial for relating the information of underlying theories to the coefficients of the low-energy effective Lagrangian. However the compact form obtained in previous works is not complete. In this letter we add several new chiral invariant terms to it and discuss the contributions of these terms to the original electroweak chiral Lagrangian.Comment: 3 pages, references adde

    Phase diagram of a Bose-Fermi mixture in a one-dimensional optical lattice in terms of fidelity and entanglement

    Full text link
    We study the ground-state phase diagram of a Bose-Fermi mixture loaded in a one-dimensional optical lattice by computing the ground-state fidelity and quantum entanglement. We find that the fidelity is able to signal quantum phase transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation state of the system; and the concurrence can be used to signal the transition between the density-wave phase and the Ising phase.Comment: 4 pages 3 figure

    Electronic correlations and unusual superconducting response in the optical properties of the iron-chalcogenide FeTe0.55Se0.45

    Full text link
    The in-plane complex optical properties of the iron-chalcogenide superconductor FeTe0.55Se0.45 have been determined above and below the critical temperature Tc = 14 K. At room temperature the conductivity is described by a weakly-interacting Fermi liquid; however, below 100 K the scattering rate develops a frequency dependence in the terahertz region, signaling the increasingly correlated nature of this material. We estimate the dc conductivity just above Tc to be sigma_dc ~ 3500 Ohm-1cm-1 and the superfluid density rho_s0 ~ 9 x 10^6 cm-2, which places this material close to the scaling line rho_s0/8 ~ 8.1 sigma_dc Tc for a BCS dirty-limit superconductor. Below Tc the optical conductivity reveals two gap features at Delta_1,2 ~ 2.5 and ~ 5.1 meV.Comment: Minor revisions, 5 pages, 4 figure
    corecore