14,911 research outputs found

    On Sasaki-Einstein manifolds in dimension five

    Full text link
    We prove the existence of Sasaki-Einstein metrics on certain simply connected 5-manifolds where until now existence was unknown. All of these manifolds have non-trivial torsion classes. On several of these we show that there are a countable infinity of deformation classes of Sasaki-Einstein structures.Comment: 18 pages, Exposition was expanded and a reference adde

    Rotating gravity currents: small-scale and large-scale laboratory experiments and a geostrophic model

    Get PDF
    Laboratory experiments simulating gravity-driven coastal surface currents produced by estuarine fresh-water discharges into the ocean are discussed. The currents are generated inside a rotating tank filled with salt water by the continuous release of buoyant fresh water from a small source at the fluid surface. The height, the width and the length of the currents are studied as a function of the background rotation rate, the volumetric discharge rate and the density difference at the source. Two complementary experimental data sets are discussed and compared with each other. One set of experiments was carried out in a tank of diameter 1 m on a small-scale rotating turntable. The second set of experiments was conducted at the large-scale Coriolis Facility (LEGI, Grenoble) which has a tank of diameter 13 m. A simple geostrophic model predicting the current height, width and propagation velocity is developed. The experiments and the model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. These parameters enable the corresponding data of the large-scale and the small-scale experiments to be collapsed onto a single line. Good agreement between the model and the experiments is found

    Self-organization, scaling and collapse in a coupled automaton model of foragers and vegetation resources with seed dispersal

    Full text link
    We introduce a model of traveling agents ({\it e.g.} frugivorous animals) who feed on randomly located vegetation patches and disperse their seeds, thus modifying the spatial distribution of resources in the long term. It is assumed that the survival probability of a seed increases with the distance to the parent patch and decreases with the size of the colonized patch. In turn, the foraging agents use a deterministic strategy with memory, that makes them visit the largest possible patches accessible within minimal travelling distances. The combination of these interactions produce complex spatio-temporal patterns. If the patches have a small initial size, the vegetation total mass (biomass) increases with time and reaches a maximum corresponding to a self-organized critical state with power-law distributed patch sizes and L\'evy-like movement patterns for the foragers. However, this state collapses as the biomass sharply decreases to reach a noisy stationary regime characterized by corrections to scaling. In systems with low plant competition, the efficiency of the foraging rules leads to the formation of heterogeneous vegetation patterns with 1/fÎą1/f^{\alpha} frequency spectra, and contributes, rather counter-intuitively, to lower the biomass levels.Comment: 11 pages, 5 figure

    Gravitational Chern-Simons and the adiabatic limit

    Full text link
    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasi-regular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed in a paper of Guralnik, Iorio, Jackiw and Pi (2003), although not in the adiabatic context.Comment: 17 page

    Some Heuristic Semiclassical Derivations of the Planck Length, the Hawking Effect and the Unruh Effect

    Full text link
    The formulae for Planck length, Hawking temperature and Unruh-Davies temperature are derived by using only laws of classical physics together with the Heisenberg principle. Besides, it is shown how the Hawking relation can be deduced from the Unruh relation by means of the principle of equivalence; the deep link between Hawking effect and Unruh effect is in this way clarified.Comment: LaTex file, 6 pages, no figure

    Hydrodynamic reductions of the heavenly equation

    Full text link
    We demonstrate that Pleba\'nski's first heavenly equation decouples in infinitely many ways into a triple of commuting (1+1)-dimensional systems of hydrodynamic type which satisfy the Egorov property. Solving these systems by the generalized hodograph method, one can construct exact solutions of the heavenly equation parametrized by arbitrary functions of a single variable. We discuss explicit examples of hydrodynamic reductions associated with the equations of one-dimensional nonlinear elasticity, linearly degenerate systems and the equations of associativity.Comment: 14 page

    On the supersymmetries of anti de Sitter vacua

    Full text link
    We present details of a geometric method to associate a Lie superalgebra with a large class of bosonic supergravity vacua of the type AdS x X, corresponding to elementary branes in M-theory and type II string theory.Comment: 16 page
    • …
    corecore