482 research outputs found
Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. IV. Porosity in physical and velocity space
[Abridged] Clumping in the radiation-driven winds of hot, massive stars
affects the derivation of synthetic observables across the electromagnetic
spectrum. We implement a formalism for treating wind clumping - in particular
the light-leakage effects associated with a medium that is porous in physical
and velocity space - into the global (photosphere+wind) NLTE model atmosphere
code FASTWIND. We assume a stochastic, two-component wind consisting of a
mixture of optically thick and thin clumps embedded in a rarefied inter-clump
medium. We account fully for the reductions in opacity associated with porosity
in physical and velocity-space, and for the well-known effect that opacities
depending on rho^2 are higher in clumpy winds than in smooth ones of equal
mass-loss rate. By formulating our method in terms of suitable mean and
effective opacities for the clumpy wind, we are able to compute models with the
same speed (~15 min. on a modern laptop) as in previous code-generations. Some
first, generic results of the new models include: i) Confirming earlier results
that velocity-space porosity is critical for analysis of UV wind lines in
O-stars; ii) for the optical Halpha line, optically thick clumping effects are
small for O-stars, but potentially very important for late B and A-supergiants;
iii) spatial porosity is a marginal effect for absorption of high-energy X-rays
in O-stars, as long as the mean-free path between clumps are kept at realistic
values; iv) porosity is negligible at typical O-star radio-photosphere radii;
v) regarding the wind ionization balance, a general trend is that increased
rates of recombination in simulations with optically thin clumps lead to
overall lower degrees of ionization than in corresponding smooth models, but
that this effect now is counteracted by the increased levels of light-leakage
associated with porosity in physical and velocity space.Comment: 12 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic
2D wind clumping in hot, massive stars from hydrodynamical line-driven instability simulations using a pseudo-planar approach
Context: Clumping in the radiation-driven winds of hot, massive stars arises
naturally due to the strong, intrinsic instability of line-driving (the `LDI').
But LDI wind models have so far mostly been limited to 1D, mainly because of
severe computational challenges regarding calculation of the multi-dimensional
radiation force. Aims: To simulate and examine the dynamics and
multi-dimensional nature of wind structure resulting from the LDI. Methods: We
introduce a `pseudo-planar', `box-in-a-wind' method that allows us to
efficiently compute the line-force in the radial and lateral directions, and
then use this approach to carry out 2D radiation-hydrodynamical simulations of
the time-dependent wind. Results: Our 2D simulations show that the LDI first
manifests itself by mimicking the typical shell-structure seen in 1D models,
but how these shells then quickly break up into complex 2D density and velocity
structures, characterized by small-scale density `clumps' embedded in larger
regions of fast and rarefied gas. Key results of the simulations are that
density-variations in the well-developed wind statistically are quite isotropic
and that characteristic length-scales are small; a typical clump size is ~0.01R
at 2R, thus resulting also in rather low typical clump-masses ~10^17 g.
Overall, our results agree well with the theoretical expectation that the
characteristic scale for LDI-generated wind-structure is of order the Sobolev
length. We further confirm some earlier results that lateral `filling-in' of
radially compressed gas leads to somewhat lower clumping factors in 2D
simulations than in comparable 1D models. We conclude by discussing an
extension of our method toward rotating LDI wind models that exhibit an
intriguing combination of large- and small-scale structure extending down to
the wind base.Comment: 9 pages, 7 figures + 1 Appendix with 1 figure. Recommended for
publication in A&
Mass loss from inhomogeneous hot star winds III. An effective-opacity formalism for line radiative transfer in accelerating, clumped two-component media, and first results on theory and diagnostics
[Abridged] We develop and benchmark a fast and easy-to-use effective-opacity
formalism for line and continuum radiative transfer in an accelerating
two-component clumpy medium. The formalism bridges the limits of optically thin
and thick clumps, and is here used to i) design a simple vorosity-modified
Sobolev with exact integration (vmSEI) method for analyzing UV wind resonance
lines in hot, massive stars, and ii) derive simple correction factors to the
line force driving the outflows of such stars. We show that (for a given
ionization factor) UV resonance doublets may be used to analytically predict
the upward corrections in empirically inferred mass-loss rates associated with
porosity in velocity space (a.k.a. velocity-porosity, or vorosity), but that
severe solution degeneracies exist. For an inter-clump density set to 1 % of
the mean density, we for O and B supergiants derive upward empirical mass-loss
corrections of typically factors of either ~5 or ~50, depending on which of the
two applicable solutions is chosen. Overall, our results indicate this solution
dichotomy severely limits the use of UV resonance lines as direct mass-loss
indicators of clumped hot stellar winds. We next apply the effective-opacity
formalism to the standard CAK theory of line-driven winds. By analytic and
numerical hydrodynamics calculations, we show that in cases where vorosity is
important at the critical point setting the mass-loss rate, the reduced
line-force leads to a lower theoretical mass loss, by a factor scaling with the
normalized velocity filling factor fvel. On the other hand, if vorosity is
important only above this critical point, the predicted mass loss is not
affected, but the wind terminal speed is reduced. This shows that porosity in
velocity space can have a significant impact not only on the diagnostics, but
also on the dynamics and theory of radiatively driven winds.Comment: 13 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
Wind Roche lobe overflow in high mass X-ray binaries : a possible mass transfer mechanism for Ultraluminous X-ray sources
Ultra-luminous X-ray sources (ULX) have so high X-ray luminosities that they
were long thought to be accreting intermediate mass black holes. Yet, some ULX
have been shown to display periodic modulations and coherent pulsations,
suggestive of a neutron star in orbit around a stellar companion and accreting
at super-Eddington rates. In this letter, we propose that the mass transfer in
ULX could be qualitatively the same as in Supergiant X-ray binaries (SgXB),
with a wind from the donor star highly beamed towards the compact object. Since
the star does not fill its Roche lobe, this mass transfer mechanism known as
"wind Roche lobe overflow" can remain stable even for large mass ratios. Based
on realistic acceleration profiles derived from spectral observations and
modeling of the stellar wind, we compute the bulk motion of the wind to
evaluate the fraction of the stellar mass outflow captured by the compact
object. We identify the orbital and stellar conditions for a SgXB to transfer
mass at rates matching the expectations for ULX and show that the transition
from SgXB to ULX luminosity levels is progressive. These results indicate that
a high stellar Roche lobe filling factor is not necessary to funnel large
quantities of material into the Roche lobe of the accretor. Large stellar mass
loss rates such as the ones from the Wolf-Rayet star in M101 ULX-1 or the late
B9 Supergiant in NGC 7793 P13 are enough to lead to a highly beamed wind and a
significantly enhanced mass transfer rate
3D radiative transfer: Continuum and line scattering in non-spherical winds from OB stars
Context: State of the art quantitative spectroscopy of OB-stars compares
synthetic spectra (calculated by means of 1D, spherically symmetric computer
codes) with observations. Certain stellar atmospheres, however, show strong
deviations from spherical symmetry, and need to be treated in 3D. Aims: We
present a newly developed 3D radiative transfer code, tailored to the solution
of the radiation field in rapidly expanding stellar atmospheres. We apply our
code to the continuum transfer in wind-ablation models, and to the UV resonance
line formation in magnetic winds. Methods: We have used a 3D finite-volume
method for the solution of the equation of radiative transfer, to study
continuum- and line-scattering problems. Convergence has been accelerated by a
non-local approximate Lambda-iteration scheme. Particular emphasis has been put
on careful (spherically symmetric) test cases. Results: Typical errors of the
source functions, when compared to 1D solutions, are of the order of 10-20 %,
and increase for optically thick continua. In circumstellar discs, the
radiation temperatures in the (optically thin) transition region from wind to
disc are quite similar to corresponding values in the wind. For MHD simulations
of dynamical magnetospheres, the line profiles, calculated with our 3D code,
agree well with previous solutions using a 3D-SEI method. When compared with
profiles resulting from the `analytic dynamical magnetosphere' (ADM) model,
significant differences become apparent. Conclusions: Due to similar radiation
temperatures in the wind and the transition region to the disc, the same
line-strength distribution can be applied within radiation hydrodynamic
calculations for circumstellar discs in `accreting high-mass stars'. To
properly describe the UV line formation in dynamical magnetospheres, the ADM
model needs to be further developed, at least in a large part of the outer
wind
The rotation rates of massive stars: How slow are the slow ones?
Context: Rotation plays a key role in the life cycles of stars with masses
above 8 Msun. Hence, accurate knowledge of the rotation rates of such massive
stars is critical for understanding their properties and for constraining
models of their evolution. Aims: This paper investigates the reliability of
current methods used to derive projected rotation speeds v sin i from
line-broadening signatures in the photospheric spectra of massive stars,
focusing on stars that are not rapidly rotating. Methods: We use slowly
rotating magnetic O-stars with well-determined rotation periods to test the
Fourier transform (FT) and goodness-of-fit (GOF) methods typically used to
infer projected rotation rates of massive stars. Results: For our two magnetic
test stars with measured rotation periods longer than one year, i.e., with v
sin i < 1 km/s, we derive v sin i ~ 40-50 km/s from both the FT and GOF
methods. These severe overestimates are most likely caused by an insufficient
treatment of the competing broadening mechanisms referred to as microturbulence
and macroturbulence. Conclusions: These findings warn us not to rely
uncritically on results from current standard techniques to derive projected
rotation speeds of massive stars in the presence of significant additional line
broadening, at least when v sin i <~ 50 km/s. This may, for example, be crucial
for i) determining the statistical distribution of observed rotation rates of
massive stars, ii) interpreting the evolutionary status and spin-down histories
of rotationally braked B-supergiants, and iii) explaining the deficiency of
observed O-stars with spectroscopically inferred v sin i ~ 0 km/s. Further
investigations of potential shortcomings of the above techniques are presently
under way.Comment: 4 pages, 4 figures, accepted for publication in A&A Letter
Atmospheric NLTE-Models for the Spectroscopic Analysis of Blue Stars with Winds. III. X-ray emission from wind-embedded shocks
X-rays/EUV radiation emitted from wind-embedded shocks in hot, massive stars
can affect the ionization balance in their outer atmospheres, and can be the
mechanism responsible for the production of highly ionized species. To allow
for these processes in the context of spectral analysis, we have implemented
such emission into our unified, NLTE model atmosphere/spectrum synthesis code
FASTWIND.
The shock structure and corresponding emission is calculated as a function of
user-supplied parameters. We account for a temperature and density
stratification inside the post-shock cooling zones, calculated for radiative
and adiabatic cooling in the inner and outer wind, respectively. The
high-energy absorption of the cool wind is considered by adding important
K-shell opacities, and corresponding Auger ionization rates have been included
into the NLTE network.
We tested and verified our implementation carefully against corresponding
results from various alternative model atmosphere codes, and studied the
effects from shock emission for important ions from He, C, N, O, Si, and P.
Surprisingly, dielectronic recombination turned out to play an essential role
for the ionization balance of OIV/OV around Teff = 45,000 K. Finally, we
investigated the behavior of the mass absorption coefficient, kappa_nu(r),
important in the context of X-ray line formation in massive star winds.
In almost all considered cases, direct ionization is of major influence, and
Auger ionization significantly affects only NVI and OVI. The approximation of a
radially constant kappa_nu is justified for r > 1.2 Rstar and lambda < 18 A,
and also for many models at longer wavelengths. To estimate the actual value of
this quantity, however, the HeII opacities need to be calculated from detailed
NLTE modeling, at least for wavelengths longer than 18 to 20 A, and information
on the individual CNO abundances has to be present.Comment: accepted by A&
- …