8,934 research outputs found
Electroweak Absorptive Parts in NRQCD Matching Conditions
Electroweak corrections associated with the instability of the top quark to
the next-to-next-to-leading logarithmic (NNLL) total top pair threshold cross
section in e+e- annihilation are determined. Our method is based on absorptive
parts in electroweak matching conditions of the NRQCD operators and the optical
theorem. The corrections lead to ultraviolet phase space divergences that have
to be renormalized and lead to NLL mixing effects. Numerically, the corrections
can amount to several percent and are comparable to the known NNLL QCD
corrections.Comment: 17 pages, revtex4, 4 postscript figures included; minor changes in
text and references, title modified in printed versio
Three-Loop Anomalous Dimension of the Heavy Quark Pair Production Current in Non-Relativistic QCD
The three-loop non-mixing contributions to the anomalous dimension of the
leading order quark pair production current in non-relativistic QCD are
computed. It is demonstrated that the renormalization procedure can only be
carried out consistently if the dynamics of both soft and the ultrasoft degrees
of freedom is present for all scales below the heavy quark mass, and if the
soft and ultrasoft renormalization scales are always correlated.Comment: 19 pages, revtex, 5 postscript figures include
On Electroweak Matching Conditions for Top Pair Production at Threshold
We determine the real parts of electroweak matching conditions relevant for
top quark pair production close to threshold in e+e- annihilation at
next-to-next-to-leading logarithmic (NNLL) order. Numerically the corrections
are comparable to the NNLL QCD corrections.Comment: 12 pages, revtex4, 1 postscript figure included; minor changes in
text and references, version published in Phys. Rev.
Phase Space Matching and Finite Lifetime Effects for Top-Pair Production Close to Threshold
The top-pair production cross section close to threshold in
collisions is strongly affected by the small lifetime of the top
quark. Since the cross section is defined through final states containing the
top decay products, a consistent definition of the cross section depends on
prescriptions how these final states are accounted for the cross section.
Experimentally, these prescriptions are implemented for example through cuts on
kinematic quantities such as the reconstructed top quark invariant masses. As
long as these cuts do not reject final states that can arise from the decay of
a top and an anti-top quark with a small off-shellness compatible with the
nonrelativistic power-counting, they can be implemented through imaginary phase
space matching conditions in NRQCD. The prescription-dependent cross section
can then be determined from the optical theorem using the forward
scattering amplitude. We compute the phase space matching conditions associated
to cuts on the top and anti-top invariant masses at next-to-next-to-leading
logarithmic (NNLL) order and partially at next-to-next-to-next-to-leading
logarithmic (NLL) order in the nonrelativistic expansion and, together
with finite lifetime and electroweak effects known from previous work, analyze
their numerical impact on the cross section. We show that the phase
space matching contributions are essential to make reliable NRQCD predictions,
particularly for energies below the peak region, where the cross section is
small. We find that irreducible background contributions associated to final
states that do not come from top decays are strongly suppressed and can be
neglected for the theoretical predictions.Comment: 62 pages, 21 figure
Determining White Noise Forcing From Eulerian Observations in the Navier Stokes Equation
The Bayesian approach to inverse problems is of paramount importance in
quantifying uncertainty about the input to and the state of a system of
interest given noisy observations. Herein we consider the forward problem of
the forced 2D Navier Stokes equation. The inverse problem is inference of the
forcing, and possibly the initial condition, given noisy observations of the
velocity field. We place a prior on the forcing which is in the form of a
spatially correlated temporally white Gaussian process, and formulate the
inverse problem for the posterior distribution. Given appropriate spatial
regularity conditions, we show that the solution is a continuous function of
the forcing. Hence, for appropriately chosen spatial regularity in the prior,
the posterior distribution on the forcing is absolutely continuous with respect
to the prior and is hence well-defined. Furthermore, the posterior distribution
is a continuous function of the data. We complement this theoretical result
with numerical simulation of the posterior distribution
Massive Quark Production in Electron Positron Annihilation to Order
Recent analytical and numerical results for the three-loop polarization
function allow to present a phenomenological analysis of the cross section for
massive quark production in electron positron annihilation to order
. Numerical predictions based on fixed order perturbation theory
are presented for charm and bottom production above 5 and 11.5 GeV,
respectively. The contribution from these energy regions to ,
the running QED coupling constant at scale M_Z, are given. The dominant terms
close to threshold, i.e. in an expansion for small quark velocity , are
presented.Comment: 26 pages (Latex), 16 figures (Postscript
MAGIC sensitivity to millisecond-duration optical pulses
The MAGIC telescopes are a system of two Imaging Atmospheric Cherenkov
Telescopes (IACTs) designed to observe very high energy (VHE) gamma rays above
~50 GeV. However, as IACTs are sensitive to Cherenkov light in the UV/blue and
use photo-detectors with a time response well below the ms scale, MAGIC is also
able to perform simultaneous optical observations. Through an alternative
system installed in the central PMT of MAGIC II camera, the so-called central
pixel, MAGIC is sensitive to short (1ms - 1s) optical pulses. Periodic signals
from the Crab pulsar are regularly monitored. Here we report for the first time
the experimental determination of the sensitivity of the central pixel to
isolated 1-10 ms long optical pulses. The result of this study is relevant for
searches of fast transients such as Fast Radio Bursts (FRBs).Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC
2017), Bexco, Busan, Korea (arXiv:1708.05153
- …