8,814 research outputs found
Mechanically Detecting and Avoiding the Quantum Fluctuations of a Microwave Field
During the theoretical investigation of the ultimate sensitivity of
gravitational wave detectors through the 1970's and '80's, it was debated
whether quantum fluctuations of the light field used for detection, also known
as photon shot noise, would ultimately produce a force noise which would
disturb the detector and limit the sensitivity. Carlton Caves famously answered
this question with "They do." With this understanding came ideas how to avoid
this limitation by giving up complete knowledge of the detector's motion. In
these back-action evading (BAE) or quantum non-demolition (QND) schemes, one
manipulates the required quantum measurement back-action by placing it into a
component of the motion which is unobserved and dynamically isolated. Using a
superconducting, electro-mechanical device, we realize a sensitive measurement
of a single motional quadrature with imprecision below the zero-point
fluctuations of motion, detect both the classical and quantum measurement
back-action, and demonstrate BAE avoiding the quantum back-action from the
microwave photons by 9 dB. Further improvements of these techniques are
expected to provide a practical route to manipulate and prepare a squeezed
state of motion with mechanical fluctuations below the quantum zero-point
level, which is of interest both fundamentally and for the detection of very
weak forces
Observation and interpretation of motional sideband asymmetry in a quantum electro-mechanical device
Quantum electro-mechanical systems offer a unique opportunity to probe
quantum noise properties in macroscopic devices, properties which ultimately
stem from the Heisenberg Uncertainty Principle. A simple example of this is
expected to occur in a microwave parametric transducer, where mechanical motion
generates motional sidebands corresponding to the up and down
frequency-conversion of microwave photons. Due to quantum vacuum noise, the
rates of these processes are expected to be unequal. We measure this
fundamental imbalance in a microwave transducer coupled to a radio-frequency
mechanical mode, cooled near the ground state of motion. We also discuss the
subtle origin of this imbalance: depending on the measurement scheme, the
imbalance is most naturally attributed to the quantum fluctuations of either
the mechanical mode or of the electromagnetic field
Quantum squeezing of motion in a mechanical resonator
As a result of the quantum, wave-like nature of the physical world, a
harmonic oscillator can never be completely at rest. Even in the quantum ground
state, its position will always have fluctuations, called the zero-point
motion. Although the zero-point fluctuations are unavoidable, they can be
manipulated. In this work, using microwave frequency radiation pressure, we
both prepare a micron-scale mechanical system in a state near the quantum
ground state and then manipulate its thermal fluctuations to produce a
stationary, quadrature-squeezed state. We deduce that the variance of one
motional quadrature is 0.80 times the zero-point level, or 1 dB of
sub-zero-point squeezing. This work is relevant to the quantum engineering of
states of matter at large length scales, the study of decoherence of large
quantum systems, and for the realization of ultra-sensitive sensing of force
and motion
Continuous-time Analysis of Anchor Acceleration
Recently, the anchor acceleration, an acceleration mechanism distinct from
Nesterov's, has been discovered for minimax optimization and fixed-point
problems, but its mechanism is not understood well, much less so than Nesterov
acceleration. In this work, we analyze continuous-time models of anchor
acceleration. We provide tight, unified analyses for characterizing the
convergence rate as a function of the anchor coefficient , thereby
providing insight into the anchor acceleration mechanism and its accelerated
-convergence rate. Finally, we present an adaptive method
inspired by the continuous-time analyses and establish its effectiveness
through theoretical analyses and experiments
Speckle-visibility spectroscopy: A tool to study time-varying dynamics
We describe a multispeckle dynamic light scattering technique capable of
resolving the motion of scattering sites in cases that this motion changes
systematically with time. The method is based on the visibility of the speckle
pattern formed by the scattered light as detected by a single exposure of a
digital camera. Whereas previous multispeckle methods rely on correlations
between images, here the connection with scattering site dynamics is made more
simply in terms of the variance of intensity among the pixels of the camera for
the specified exposure duration. The essence is that the speckle pattern is
more visible, i.e. the variance of detected intensity levels is greater, when
the dynamics of the scattering site motion is slow compared to the exposure
time of the camera. The theory for analyzing the moments of the spatial
intensity distribution in terms of the electric field autocorrelation is
presented. It is demonstrated for two well-understood samples, a colloidal
suspension of Brownian particles and a coarsening foam, where the dynamics can
be treated as stationary. However, the method is particularly appropriate for
samples in which the dynamics vary with time, either slowly or rapidly, limited
only by the exposure time fidelity of the camera. Potential applications range
from soft-glassy materials, to granular avalanches, to flowmetry of living
tissue.Comment: review - theory and experimen
Electronic structures of ZnCoO using photoemission and x-ray absorption spectroscopy
Electronic structures of ZnCoO have been investigated using
photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The
Co 3d states are found to lie near the top of the O valence band, with a
peak around eV binding energy. The Co XAS spectrum provides
evidence that the Co ions in ZnCoO are in the divalent Co
() states under the tetrahedral symmetry. Our finding indicates that the
properly substituted Co ions for Zn sites will not produce the diluted
ferromagnetic semiconductor property.Comment: 3 pages, 2 figure
Stripe structure, spectral feature and soliton gap in high Tc cuprates
We show that the lightly doped La_{2-x}Sr_{x}CuO_{4} can be described in
terms of a stripe magnetic structure or soliton picture. The internal
relationship between the recent neutron observation of the diagonal (x=0.05) to
vertical (x >= 0.06) stripe transition, which was predicted, and the
concomitant metal-insulator transition is clarified by this solitonic physics.
The phase diagram with the unidentified transition lines between
antiferromagnetic to stripe phases, the doping dependence of the modulation
period, the origin of the mid-infrared optical absorption are investigated
comparatively with other single layer systems: La_{2-x}Sr_{x}NiO_{4} and
(La,Nd)_{2-x}Sr_{x}CuO_{4}. The novel type of quasi-particles and holes is
fully responsible for metallic conduction and ultimately superconductivity.Comment: 4 pages RevTex, 5 figure
- …