20,709 research outputs found

    Jastrow-Correlated Wavefunctions for Flat-Band Lattices

    Get PDF
    The electronic band structure of many compounds, e.g., carbon-based structures, can exhibit essentially no dispersion. Models of electrons in flat-band lattices define non-perturbative strongly correlated problems by default. We construct a set of Jastrow-correlated ansatz wavefunctions to capture the low energy physics of interacting particles in flat bands. We test the ansatz in a simple Coulomb model of spinless electrons in a honeycomb ribbon. We find that the wavefunction accurately captures the ground state in a transition from a crystal to a uniform quantum liquid.Comment: 5 pages, 4 figures, update context, references and publication informatio

    Direct measurement of penetration length in ultra-thin and/or mesoscopic superconducting structures

    Get PDF
    We describe a method for direct measurement of the magnetic penetration length in thin (10 - 100 nm) superconducting structures having overall dimensions in the range 1 to 100 micrometers. The method is applicable for broadband magnetic fields from dc to MHz frequencies.Comment: Accepted by Journal of Applied P:hysics (Jun 2006).5 pages, 5 figure

    Cosmological dynamics of scalar fields with O(N) symmetry

    Full text link
    In this paper, we study the cosmological dynamics of scalar fields with O(N) symmetry in general potentials. We compare the phase space of the dynamical systems of the quintessence and phantom and give the conditions for the existence of various attractors as well as their cosmological implications. We also show that the existence of tracking attractor in O(N) phantom models require the potential with Γ<1/2\Gamma<1/2, which makes the models with exponential potential possess no tracking attractor.Comment: 9 pages, 4 figures; Replaced with the version to be published in Classical and Quantum Gravity. Reference adde

    Comparative Study of BCS-BEC Crossover Theories above TcT_c: the Nature of the Pseudogap in Ultra-Cold Atomic Fermi Gases

    Full text link
    This paper presents a comparison of two finite-temperature BCS-Bose Einstein condensation (BEC) crossover theories above the transition temperature: Nozieres Schmitt-Rink (NSR) theory and finite TT-extended BCS-Leggett theory. The comparison is cast in the form of numerical studies of the behavior of the fermionic spectral function both theoretically and as constrained by (primarily) radio frequency (RF) experiments. Both theories include pair fluctuations and exhibit pseudogap effects, although the nature of this pseudogap is very different. The pseudogap in finite TT-extended BCS-Leggett theory is found to follow a BCS-like dispersion which, in turn, is associated with a broadened BCS-like self energy, rather more similar to what is observed in high temperature superconductors (albeit, for a d-wave case). The fermionic quasi-particle dispersion is different in NSR theory and the damping is considerably larger. We argue that the two theories are appropriate in different temperature regimes with the BCS-Leggett approach more suitable nearer to condensation. There should, in effect, be little difference at higher TT as the pseudogap becomes weaker and where the simplifying approximations used in the BCS-Leggett approach break down. On the basis of momentum-integrated radio frequency studies of unpolarized gases, it would be difficult to distinguish which theory is the better. A full comparison for polarized gases is not possible since there is claimed to be inconsistencies in the NSR approach (not found in the BCS-Leggett scheme). Future experiments along the lines of momentum resolved experiments look to be very promising in distinguishing the two theories.Comment: 16 pages, 11 figure

    CMBR Constraint on a Modified Chaplygin Gas Model

    Full text link
    In this paper, a modified Chaplygin gas model of unifying dark energy and dark matter with exotic equation of state p=BρAραp=B\rho-\frac{A}{\rho^{\alpha}} which can also explain the recent accelerated expansion of the universe is investigated by the means of constraining the location of the peak of the CMBR spectrum. We find that the result of CMBR measurements does not exclude the nonzero value of parameter BB, but allows it in the range 0.35B0.025-0.35\lesssim B\lesssim0.025.Comment: 4 pages, 3 figure

    Sub-wavelength imaging at optical frequencies using canalization regime

    Full text link
    Imaging with sub-wavelength resolution using a lens formed by periodic metal-dielectric layered structure is demonstrated. The lens operates in canalization regime as a transmission device and it does not involve negative refraction and amplification of evanescent modes. The thickness of the lens have to be an integer number of half-wavelengths and can be made as large as required for ceratin applications, in contrast to the other sub-wavelength lenses formed by metallic slabs which have to be much smaller than the wavelength. Resolution of λ/20\lambda/20 at 600 nm wavelength is confirmed by numerical simulation for a 300 nm thick structure formed by a periodic stack of 10 nm layers of glass with ϵ=2\epsilon=2 and 5 nm layers of metal-dielectric composite with ϵ=1\epsilon=-1. Resolution of λ/60\lambda/60 is predicted for a structure with same thickness, period and operating frequency, but formed by 7.76 nm layers of silicon with ϵ=15\epsilon=15 and 7.24 nm layers of silver with ϵ=14\epsilon=-14.Comment: 4 pages, 4 figures, submitted to PR

    Investigating the intrinsic noise limit of Dayem bridge NanoSQUIDs

    Get PDF
    NanoSQUIDs made from Nb thin films have been produced with nanometre loop sizes down to 200 nm, using weak-link junctions with dimensions less than 60 nm. These composite (W/Nb) single layer thin film devices, patterned by FIB milling, show extremely good low-noise performance ∼170 nΦ0 at temperatures between 5 and 8.5 K and can operate in rather high magnetic fields (at least up to 1 T). The devices produced so far have a limited operating temperature range, typically only 1–2 K. We have the goal of achieving operation at 4.2 K, to be compatible with the best SQUID series array (SSA) preamplifier available. Using the SSA to readout the nanoSQUIDs provides us with a means of investigating the intrinsic noise of the former. In this paper we report improved white noise levels of these nanoSQUIDs, enabling potential detection of a single electronic spin flip in a 1-Hz bandwidth. At low frequencies the noise performance is already limited by SSA preamplifier noise

    RELT - Visualizing trees on mobile devices

    Full text link
    The small screens on increasingly used mobile devices challenge the traditional visualization methods designed for desktops. This paper presents a method called "Radial Edgeless Tree" (RELT) for visualizing trees in a 2-dimensional space. It combines the existing connection tree drawing with the space-filling approach to achieve the efficient display of trees in a small geometrical area, such as the screen that are commonly used in mobile devices. We recursively calculate a set of non-overlapped polygonal nodes that are adjacent in the hierarchical manner. Thus, the display space is fully used for displaying nodes, while the hierarchical relationships among the nodes are presented by the adjacency (or boundary-sharing) of the nodes. It is different from the other traditional connection approaches that use a node-link diagram to present the parent-child relationships which waste the display space. The hierarchy spreads from north-west to south-east in a top-down manner which naturally follows the traditional way of human perception of hierarchies. We discuss the characteristics, advantages and limitations of this new technique and suggestions for future research. © Springer-Verlag Berlin Heidelberg 2007

    Approximate Treatment of Hermitian Effective Interactions and a Bound on the Error

    Full text link
    The Hermitian effective interaction can be well-approximated by (R+R^dagger)/2 if the eigenvalues of omega^dagger omega are small or state-independent(degenerate), where R is the standard non-Hermitian effective interaction and omega maps the model-space states onto the excluded space. An error bound on this approximation is given.Comment: 13 page

    Defect generation at SiO₂/Si interfaces by low pressure chemical vapor deposition of silicon nitride

    Full text link
    Low pressurechemical vapor deposition of Si₃N₄ on oxidized Si (111) surfaces causes a change in the properties of the dominant interface defect, the Pb center, observed by electron paramagnetic resonance. The change in the signature of the Pb center is consistent with the formation of an oxynitride layer at the interface, which could be formed during the initial stages of nitride layer deposition. Photoconductivity decay measurements show a concomitant increase in the minority carrier recombination rate at the Si surface. The modified Si surface shows a worse thermal stability than the as-oxidized Si surface.Financial support for this project by the Australian Research Council DP0557398 is gratefully acknowledged
    corecore