30,215 research outputs found

    Two-Electron Linear Intersubband Light Absorption in a Biased Quantum Well

    Full text link
    We point out a novel manifestation of many-body correlations in the linear optical response of electrons confined in a quantum well. Namely, we demonstrate that along with conventional absorption peak at frequency close to intersubband energy, there exists an additional peak at double frequency. This new peak is solely due to electron-electron interactions, and can be understood as excitation of two electrons by a single photon. The actual peak lineshape is comprised of a sharp feature, due to excitation of pairs of intersubband plasmons, on top of a broader band due to absorption by two single-particle excitations. The two-plasmon contribution allows to infer intersubband plasmon dispersion from linear absorption experiments.Comment: 4 pages, 3 figures; published versio

    Measuring dark energy with the EisoEpE_{\rm iso}-E_{\rm p} correlation of gamma-ray bursts using model-independent methods

    Full text link
    In this paper, we use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the EisoEpE_{\rm iso}-E_{\rm p} correlation, where EisoE_{\rm iso} is the isotropic-equivalent gamma-ray energy and EpE_{\rm p} is the spectral peak energy. We update 42 long GRBs and try to make constraint on cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. The extrinsic scatter σext\sigma_{\rm ext} is taken into account and assigned to the parameter EisoE_{\rm iso}. The best-fitting values are a=49.15±0.26a=49.15\pm0.26, b=1.42±0.11b=1.42\pm0.11, σext=0.34±0.03\sigma_{\rm ext}=0.34\pm0.03 and Ωm=0.79\Omega_m=0.79 in the flat Λ\LambdaCDM model. The constraint on Ωm\Omega_m is 0.55<Ωm<10.55<\Omega_m<1 at the 1σ\sigma confidence level. If reduced χ2\chi^2 method is used, the best-fit results are a=48.96±0.18a=48.96\pm0.18, b=1.52±0.08b=1.52\pm0.08 and Ωm=0.50±0.12\Omega_m=0.50\pm0.12. The second method is using type Ia supernovae (SNe Ia) to calibrate the EisoEpE_{\rm iso}-E_{\rm p} correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are Ωm=0.230.04+0.06\Omega_m=0.23^{+0.06}_{-0.04} for flat Λ\LambdaCDM, and Ωm=0.18±0.11\Omega_m=0.18\pm0.11 and ΩΛ=0.46±0.51\Omega_{\Lambda}=0.46\pm0.51 for non-flat Λ\LambdaCDM. For the combination of GRB and SNe Ia sample, we obtain Ωm=0.271±0.019\Omega_m=0.271\pm0.019 and h=0.701±0.002h=0.701\pm0.002 for the flat Λ\LambdaCDM, and for the non-flat Λ\LambdaCDM, the results are Ωm=0.225±0.044\Omega_m=0.225\pm0.044, ΩΛ=0.640±0.082\Omega_{\Lambda}=0.640\pm0.082 and h=0.698±0.004h=0.698\pm0.004. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, comparing to SNe Ia alone. Our results show that the EisoEpE_{\rm iso}-E_{\rm p} correlation is promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains calibrated distance moduli of GRB

    On data skewness, stragglers, and MapReduce progress indicators

    Full text link
    We tackle the problem of predicting the performance of MapReduce applications, designing accurate progress indicators that keep programmers informed on the percentage of completed computation time during the execution of a job. Through extensive experiments, we show that state-of-the-art progress indicators (including the one provided by Hadoop) can be seriously harmed by data skewness, load unbalancing, and straggling tasks. This is mainly due to their implicit assumption that the running time depends linearly on the input size. We thus design a novel profile-guided progress indicator, called NearestFit, that operates without the linear hypothesis assumption and exploits a careful combination of nearest neighbor regression and statistical curve fitting techniques. Our theoretical progress model requires fine-grained profile data, that can be very difficult to manage in practice. To overcome this issue, we resort to computing accurate approximations for some of the quantities used in our model through space- and time-efficient data streaming algorithms. We implemented NearestFit on top of Hadoop 2.6.0. An extensive empirical assessment over the Amazon EC2 platform on a variety of real-world benchmarks shows that NearestFit is practical w.r.t. space and time overheads and that its accuracy is generally very good, even in scenarios where competitors incur non-negligible errors and wide prediction fluctuations. Overall, NearestFit significantly improves the current state-of-art on progress analysis for MapReduce

    An analysis of the Isgur-Wise Function and its derivatives within a Heavy-Light QCD Quark Model

    Full text link
    In determining the mesonic wave function from QCD inspired potential model, if the linear confinement term is taken as parent (with columbic term as perturbation), Airy's function appears in the resultant wave function - which is an infinite series. In the study of Isgur-Wise function (IWF) and its derivatives with such a wave function, the infinite upper limit of integration gives rise to divergence. In this paper, we have proposed some reasonable cut-off values for the upper limit of such integrations and studied the subsequent effect on the results. We also study the sensitivity of the order of polynomial approximation of the infinite Airy series in calculating the derivatives of IWF.Comment: 14 pages,6 tables 8 figure

    An exactly solvable phase transition model: generalized statistics and generalized Bose-Einstein condensation

    Full text link
    In this paper, we present an exactly solvable phase transition model in which the phase transition is purely statistically derived. The phase transition in this model is a generalized Bose-Einstein condensation. The exact expression of the thermodynamic quantity which can simultaneously describe both gas phase and condensed phase is solved with the help of the homogeneous Riemann-Hilbert problem, so one can judge whether there exists a phase transition and determine the phase transition point mathematically rigorously. A generalized statistics in which the maximum occupation numbers of different quantum states can take on different values is introduced, as a generalization of Bose-Einstein and Fermi-Dirac statistics.Comment: 17 pages, 2 figure

    Observable Optimal State Points of Sub-additive Potentials

    Full text link
    For a sequence of sub-additive potentials, Dai [Optimal state points of the sub-additive ergodic theorem, Nonlinearity, 24 (2011), 1565-1573] gave a method of choosing state points with negative growth rates for an ergodic dynamical system. This paper generalizes Dai's result to the non-ergodic case, and proves that under some mild additional hypothesis, one can choose points with negative growth rates from a positive Lebesgue measure set, even if the system does not preserve any measure that is absolutely continuous with respect to Lebesgue measure.Comment: 16 pages. This work was reported in the summer school in Nanjing University. In this second version we have included some changes suggested by the referee. The final version will appear in Discrete and Continuous Dynamical Systems- Series A - A.I.M. Sciences and will be available at http://aimsciences.org/journals/homeAllIssue.jsp?journalID=

    Spin Susceptibility of the Topological Superconductor UPt3 from Polarized Neutron Diffraction

    Full text link
    Experiment and theory indicate that UPt3 is a topological superconductor in an odd-parity state, based in part from temperature independence of the NMR Knight shift. However, quasiparticle spin-flip scattering near a surface, where the Knight shift is measured, might be responsible. We use polarized neutron scattering to measure the bulk susceptibility with H||c, finding consistency with the Knight shift but inconsistent with theory for this field orientation. We infer that neither spin susceptibility nor Knight shift are a reliable indication of odd-parity
    corecore