328 research outputs found
Mixed-valent ruthenium oxide - ruthenium cyanide inorganic film on glassy carbon electrodes as an amperometric sensor of aliphatic alcohols
A mixed-valent ruthenium oxide-ruthenium cyanide film on glassy carbon (GC/mvRuO-RuCN) electrode exhibits excellent electrocatalytic activity toward oxidation of simple aliphatic alcohols and polyhydric compounds in acidic media. Electrochemical formation of the ruthenium oxide-based chemically modified electrode can be accomplished by potential cycling or potentiostatic control in diluted sulfuric acid solutions. The attractive electrooxidation capabilities of hydroxyl-containing compounds at this modified electrode are highlighted in terms of sensitivity, stability, and catalytic action. Remarkably, the molar response of the catalytic oxidation increases on increasing the chain length of aliphatic alcohols. For example, the molar response ratio between 1-butanol and methanol is 37 in 25 mM sulfuric acid. Chromatographic separations with electrochemical detection using the GC/mvRuO-RuCN modified electrode allo rr very simple quantitation of aliphatic alcohols in real samples with linear calibration plots over about 3 orders of magnitude. The detection limits for ethanol, 1-propanol, 1-butanol, and 1-pentanol are 4, 0.8, 1, and 2 nmol injected (S/N = 3), respectively
FTIP1 Is an Essential Regulator Required for Florigen Transport
FT-INTERACTING PROTEIN 1 is a novel protein that is involved in transporting florigen, a long-known mobile signal that induces flowering in plants in response to day length, from companion cells to sieve elements in the phloem of Arabidopsis
Cloning whole bacterial genomes in yeast
Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation
Effect of Different Factors on Proliferation of Antler Cells, Cultured In Vitro
Antlers as a potential model for bone growth and development have become an object of rising interest. To elucidate processes explaining how antler growth is regulated, in vitro cultures have been established. However, until now, there has been no standard method to cultivate antler cells and in vitro results are often opposite to those reported in vivo. In addition, many factors which are often not taken into account under in vitro conditions may play an important role in the development of antler cells. In this study we investigated the effects of the antler growth stage, the male individuality, passaged versus primary cultures and the effect of foetal calf serum concentrations on proliferative potential of mixed antler cell cultures in vitro, derived from regenerating antlers of red deer males (Cervus elaphus). The proliferation potential of antler cells was measured by incorporation of 3H thymidine. Our results demonstrate that there is no significant effect of the antler growth stage, whereas male individuality and all other examined factors significantly affected antler cell proliferation. Furthermore, our results suggest that primary cultures may better represent in vivo conditions and processes occurring in regenerating antlers. In conclusion, before all main factors affecting antler cell proliferation in vitro will be satisfactorily investigated, results of in vitro studies focused on hormonal regulation of antler growth should be taken with extreme caution
Symplasmic transport and phloem loading in gymnosperm leaves
Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms
Modeling protein network evolution under genome duplication and domain shuffling
<p>Abstract</p> <p>Background</p> <p>Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such <it>exponential </it>evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI) networks by outweighing, in particular, all <it>time-linear </it>network growths modeled so far.</p> <p>Results</p> <p>We propose and solve a mathematical model of PPI network evolution under successive genome duplications. This demonstrates, from first principles, that evolutionary conservation and scale-free topology are intrinsically linked properties of PPI networks and emerge from <it>i) </it>prevailing <it>exponential </it>network dynamics under duplication and <it>ii) asymmetric divergence </it>of gene duplicates. While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein domains under exponential and asymmetric duplication/divergence dynamics, with multidomain proteins underlying the combinatorial formation of protein complexes. Genome duplication then provides a powerful source of PPI network innovation by promoting local rearrangements of multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well as to finer details of protein interaction and evolution. Finally, large scale features of <it>direct </it>and <it>indirect </it>PPI networks of <it>S. cerevisiae </it>are well reproduced numerically with only two adjusted parameters of clear biological significance (<it>i.e</it>. network effective growth rate and average number of protein-binding domains per protein).</p> <p>Conclusion</p> <p>This study demonstrates the statistical consequences of genome duplication and domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale across eukaryote kingdoms. In particular, scale-free topologies of PPI networks, which are found to be robust to extensive shuffling of protein domains, appear to be a simple consequence of the conservation of protein-binding domains under asymmetric duplication/divergence dynamics in the course of evolution.</p
Evidence for Female-Biased Dispersal in the Protandrous Hermaphroditic Asian Seabass, Lates calcarifer
Movement of individuals influences individual reproductive success, fitness, genetic diversity and relationships among individuals within populations and gene exchange among populations. Competition between males or females for mating opportunities and/or local resources predicts a female bias in taxa with monogamous mating systems and a male-biased dispersal in polygynous species. In birds and mammals, the patterns of dispersal between sexes are well explored, while dispersal patterns in protandrous hermaphroditic fish species have not been studied. We collected 549 adult individuals of Asian seabass (Lates calcarifer) from four locations in the South China Sea. To assess the difference in patterns of dispersal between sexes, we genotyped all individuals with 18 microsatellites. Significant genetic differentiation was detected among and within sampling locations. The parameters of population structure (FST), relatedness (r) and the mean assignment index (mAIC), in combination with data on tagging-recapture, supplied strong evidences for female-biased dispersal in the Asian seabass. This result contradicts our initial hypothesis of no sex difference in dispersal. We suggest that inbreeding avoidance of females, female mate choice under the condition of low mate competition among males, and male resource competition create a female-biased dispersal. The bigger body size of females may be a cause of the female-biased movement. Studies of dispersal using data from DNA markers and tagging-recapture in hermaphroditic fish species could enhance our understanding of patterns of dispersal in fish
Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production
High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps—after acid hydrolysis—as a complex, animal-free serum for growth of mammalian cells in vitro
- …