5,632 research outputs found

    Muon spin relaxation and rotation study on the solid solution of the two spin-gap systems (CH3)2CHNH3-CuCl3 and (CH3)2CHNH3-CuBr3

    Full text link
    Muon-spin-rotation and relaxation studies have been performed on (CH3_3)2_2CHNH3_3Cu(Clx_xBr1x_{1-x})3_3 with xx=0.85 and 0.95, which are solid solutions of the two isomorphic spin-gap systems (CH3_3)2_2CHNH3_3CuCl3_3 and (CH3_3)2_2CHNH3_3CuBr3_3 with different spin gaps. The sample with xx=0.85 showed a clear muon spin rotation under zero-field below TNT_{\rm N}=11.65K, indicating the existence of a long-range antiferromagnetic order. A critical exponent of the hyperfine field was obtained to be β\beta=0.33, which agrees with 3D-Ising model. In the other sample with xx=0.95, an anomalous enhancement of the muon spin relaxation was observed at very low temperatures indicating a critical slowing down due to a magnetic instability of the ground state

    Electronic structure of Ca1x_{1-x}Srx_xVO3_3: a tale of two energy-scales

    Get PDF
    We investigate the electronic structure of Ca1x_{1-x}Srx_xVO3_3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy-scales, namely the low energy-scale of thermal excitations (~kBTk_{B}T) and the high-energy scale related to Coulomb and other electronic interactions.Comment: 4 pages and 3 figures. Europhysics Letters (appearing

    Dynamics and thermalization of the nuclear spin bath in the single-molecule magnet Mn12-ac: test for the theory of spin tunneling

    Full text link
    The description of the tunneling of a macroscopic variable in the presence of a bath of localized spins is a subject of great fundamental and practical interest, and is relevant for many solid-state qubit designs. Instead of focusing on the the "central spin" (as is most often done), here we present a detailed study of the dynamics of the nuclear spin bath in the Mn12-ac single-molecule magnet, probed by NMR experiments down to very low temperatures (T = 20 mK). We find that the longitudinal relaxation rate of the 55Mn nuclei in Mn12-ac becomes roughly T-independent below T = 0.8 K, and can be strongly suppressed with a longitudinal magnetic field. This is consistent with the nuclear relaxation being caused by quantum tunneling of the molecular spin, and we attribute the tunneling fluctuations to the minority of fast-relaxing molecules present in the sample. The transverse nuclear relaxation is also T-independent for T < 0.8 K, and can be explained qualitatively and quantitatively by the dipolar coupling between like nuclei in neighboring molecules. We also show that the isotopic substitution of 1H by 2H leads to a slower nuclear longitudinal relaxation, consistent with the decreased tunneling probability of the molecular spin. Finally, we demonstrate that, even at the lowest temperatures, the nuclear spins remain in thermal equilibrium with the lattice phonons, and we investigate the timescale for their thermal equilibration. After a review of the theory of macroscopic spin tunneling in the presence of a spin bath, we argue that most of our experimental results are consistent with that theory, but the thermalization of the nuclear spins is not.Comment: 24 pages, 18 figures. Experimental study of the spin bath dynamics in quantum nanomagnets, plus an extensive review and application of the theor

    Mechanism of Lattice-Distortion-Induced Electric-Polarization Flop in the Multiferroic Perovskite Manganites

    Full text link
    Magnetoelectric phase diagrams of the perovskite manganites, Eu1-xYxMnO3 and Gd1-xTbxMnO3, are theoretically studied. We first construct a microscopic model, and then analyze the model using the Monte-Carlo method. We reproduce the diagrams, which contain two different multiferroic states, i.e., the ab-plane spin cycloid with electric polarization P//a and the bc-plane spin cycloid with P//c. We reveal that their competition originates from a conflict between the single-ion anisotropy and the Dzyaloshinsky-Moriya interaction, which is controlled by the second-neighbor spin exchanges enhanced by the GdFeO3-type distortion. This leads to a P flop from a to c with increasing x in agreement with the experiments.Comment: 5 pages, 5 figures. Recalculated results after correcting errors in the assignment of DM vectors. The conclusion is not affecte

    A Doubly Nudged Elastic Band Method for Finding Transition States

    Full text link
    A modification of the nudged elastic band (NEB) method is presented that enables stable optimisations to be run using both the limited-memory quasi-Newton (L-BFGS) and slow-response quenched velocity Verlet (SQVV) minimisers. The performance of this new `doubly nudged' DNEB method is analysed in conjunction with both minimisers and compared with previous NEB formulations. We find that the fastest DNEB approach (DNEB/L-BFGS) can be quicker by up to two orders of magnitude. Applications to permutational rearrangements of the seven-atom Lennard-Jones cluster (LJ7) and highly cooperative rearrangements of LJ38 and LJ75 are presented. We also outline an updated algorithm for constructing complicated multi-step pathways using successive DNEB runs.Comment: 13 pages, 8 figures, 2 table

    Studies of transverse and longitudinal relaxations of 55^{55}Mn in molecular cluster magnet Mn12_{12}Ac

    Full text link
    The transverse and longitudinal relaxation rates 1/T2T_2 and 1/T1T_1 of 55^{55}Mn in molecular cluster magnet Mn12_{12}Ac have been measured al low temperatures down to 200mK and in the fields upto 9T. Both of 1/T2T_2 and 1/T1T_1 exhibit remarkable decreases with decreasing temperature and with increasing field, with the relative relation T1/T2200T_1/T_2 \approx 200. In the analysis, we adopt a simple model that the thermal fluctuation of the cluster spin SS=10 associated with the spin-phonon interactionis, is only due to the excitation to the first excited state from the ground state with the average life-times τ1\tau_ 1 and τ0\tau_0 (τ0\tau_ 0\ggτ1\tau_1). We show that 1/T2T_2 is interpreted in terms of the strong collision regime as given by 1/τ0\tau_ 0, and that 1/T1T_1 is understood by the high-frequency limit based on standard perturbation treatment for the step-wise fluctuating field, thus being proportional to 1/τ0ωN2\tau_0\omega_N^2.Comment: 12 pages, 11 fugures, revtex

    Search for Magnetic Monopoles Trapped in Matter

    Get PDF
    There have been many searches for magnetic monopoles in flight, but few for monopoles in matter. We have searched for magnetic monopoles in meteorites, schists, ferromanganese nodules, iron ores and other materials. The detector was a superconducting induction coil connected to a SQUID (Superconducting Quantum Interference Device) with a room temperature bore 15 cm in diameter. We tested a total of more than 331 kg of material including 112 kg of meteorites. We found no monopole and conclude the overall monopole/nucleon ratio in the samples is <1.2×1029<1.2 \times 10^{-29} with a 90\% confidence level.Comment: 6 pages, rev tex, no figure

    RNA and epigenetic silencing: Insight from fission yeast

    Get PDF
    Post-translational modifications of histones are critical not only for local regulation of gene expression, but also for higher-order structure of the chromosome and genome organization in general. These modifications enable a preset state to be maintained over subsequent generations and thus provide an epigenetic level of regulation. Heterochromatic regions of the genome are epigenetically regulated to maintain a "silent state" and protein coding genes inserted into these regions are subject to the same epigenetic silencing. The fission yeast Schizosaccharomyces pombe has well characterized regions of heterochromatin and has proven to be a powerful model for elucidation of epigenetic silencing mechanisms. Research in S. pombe led to the breakthrough discovery that epigenetic silencing is not solely a chromatin-driven transcriptional repression and that RNA interference of nascent transcripts can guide epigenetic silencing and associated histone modifications. Over the last 10years, an eloquent integration of genetic and biochemical studies have greatly propelled our understanding of major players and effector complexes for regulation of RNAi-mediated epigenetic silencing in S. pombe. Here, we review recent research related to regulation of the epigenetic state in S. pombe heterochromatin, focusing specifically on the mechanisms by which transcription and RNA processing interact with the chromatin modification machinery to maintain the epigenetically silent state

    The Effect of ff-dd Magnetic Coupling in Multiferroic RRMnO3_3 Crystals

    Full text link
    We have established detailed magnetoelectric phase diagrams of (Eu0.595_{0.595}Y0.405_{0.405})1x_{1-x}Tbx_xMnO3_3 (0x10 \le x \le 1) and (Eu,Y)1x_{1-x}Gdx_xMnO3_3 (0x0.690 \le x \le 0.69), whose average ionic radii of RR-site (RR: rare earth) cations are equal to that of Tb3+^{3+}, in order to reveal the effect of rare earth 4ff magnetic moments on the magnetoelectric properties. In spite of the same RR-site ionic radii, the magnetoelectric properties of the two systems are remarkably different from each other. A small amount of Tb substitution on RR sites (x0.2x \sim 0.2) totally destroys ferroelectric polarization along the a axis (PaP_a), and an increase in Tb concentration stabilizes the PcP_c phase. On the other hand, Gd substitution (x0.2x \sim 0.2) extinguishes the PcP_c phase, and slightly suppresses the PaP_a phase. These results demonstrate that the magnetoelectric properties of RRMnO3_3 strongly depend on the characteristics of the rare earth 4ff moments.Comment: 10 pages, 5 figures Submitted to Journal of the Physical Society of Japa

    Local Heavy Quasiparticle in Four-Level Kondo Model

    Full text link
    An impurity four-level Kondo model, in which an ion is tunneling among 4-stable points and interacting with surrounding conduction electrons, is investigated using both perturbative and numerical renormalization group methods. The results of numerical renormalization group studies show that it is possible to construct the ground state wavefunction including the excited ion states if we take into account the interaction between the conduction electrons and the ion. The resultant effective mass of quasiparticles is moderately enhanced. This result offers a good explanation for the enhanced and magnetically robust Sommerfeld coefficient observed in SmOs4_4Sb12_{12}, some other filled-skutterudites, and clathrate compounds.Comment: 9 pages, 7 figures. Added references and "Note added
    corecore