335 research outputs found
Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events
collected by the Telescope Array (TA) detector in the first 40 months of
operation. Following earlier studies, we examine event sets with energy
thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the
events in right ascension and declination are compatible with an isotropic
distribution in all three sets. We then compare with previously reported
clustering of the UHECR events at small angular scales. No significant
clustering is found in the TA data. We then check the events with E>57 EeV for
correlations with nearby active galactic nuclei. No significant correlation is
found. Finally, we examine all three sets for correlations with the large-scale
structure of the Universe. We find that the two higher-energy sets are
compatible with both an isotropic distribution and the hypothesis that UHECR
sources follow the matter distribution of the Universe (the LSS hypothesis),
while the event set with E>10 EeV is compatible with isotropy and is not
compatible with the LSS hypothesis at 95% CL unless large deflection angles are
also assumed. We show that accounting for UHECR deflections in a realistic
model of the Galactic magnetic field can make this set compatible with the LSS
hypothesis.Comment: 10 pages, 9 figure
Observation of variations in cosmic ray single count rates during thunderstorms and implications for large-scale electric field changes
We present the first observation by the Telescope Array Surface Detector (TASD) of the effect of thunderstorms on the development of cosmic ray single count rate intensity over a 700 km2 area. Observations of variations in the secondary low-energy cosmic ray counting rate, using the TASD, allow us to study the electric field inside thunderstorms, on a large scale, as it progresses on top of the 700 km2 detector, without dealing with the limitation of narrow exposure in time and space using balloons and aircraft detectors. In this work, variations in the cosmic ray intensity (single count rate) using the TASD, were studied and found to be on average at the ~(0.5-1)% and up to 2% level. These observations were found to be both in excess and in deficit. They were also found to be correlated with lightning in addition to thunderstorms. These variations lasted for tens of minutes; their footprint on the ground ranged from 6 km to 24 km in diameter and moved in the same direction as the thunderstorm. With the use of simple electric field models inside the cloud and between cloud to ground, the observed variations in the cosmic ray single count rate were recreated using CORSIKA simulations. Depending on the electric field model used and the direction of the electric field in that model, the electric field magnitude that reproduces the observed low-energy cosmic ray single count rate variations was found to be approximately between 0.2 GV-0.4 GV. This in turn allows us to get a reasonable insight on the electric field and its effect on cosmic ray air showers inside thunderstorms
Charged-Particle Multiplicities in Charged-Current Neutrino-- and Anti-Neutrino--Nucleus Interactions
The CHORUS experiment, designed to search for
oscillations, consists of a nuclear emulsion target and electronic detectors.
In this paper, results on the production of charged particles in a small sample
of charged-current neutrino-- and anti-neutrino--nucleus interactions at high
energy are presented. For each event, the emission angle and the ionization
features of the charged particles produced in the interaction are recorded,
while the standard kinematic variables are reconstructed using the electronic
detectors. The average multiplicities for charged tracks, the pseudo-rapidity
distributions, the dispersion in the multiplicity of charged particles and the
KNO scaling are studied in different kinematical regions. A study of
quasi-elastic topologies performed for the first time in nuclear emulsions is
also reported. The results are presented in a form suitable for use in the
validation of Monte Carlo generators of neutrino--nucleus interactions.Comment: 17 pages, 5 figure
First High-Speed Video Camera Observations of a Lightning Flash Associated With a Downward Terrestrial Gamma-Ray Flash
In this paper, we present the first high-speed video observation of a cloud-to-ground lightning flash and its associated downward-directed Terrestrial Gamma-ray Flash (TGF). The optical emission of the event was observed by a high-speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric-field fast antenna, and the National Lightning Detection Network. The cloud-to-ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of â154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma-ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
Leading order analysis of neutrino induced dimuon events in the CHORUS experiment
We present a leading order QCD analysis of a sample of neutrino induced
charged-current events with two muons in the final state originating in the
lead-scintillating fibre calorimeter of the CHORUS detector. The results are
based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign
dimuon events collected during the exposure of the detector to the CERN Wide
Band Neutrino Beam between 1995 and 1998. % with GeV
and GeV collected %between 1995 and 1998. The analysis yields a
value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a
value of the ratio of the strange to non-strange sea in the nucleon of , improving the results obtained in similar analyses
by previous experiments.Comment: Submitted to Nuclear Physics
Associated Charm Production in Neutrino-Nucleus Interactions
In this paper a search for associated charm production both in neutral and
charged current -nucleus interactions is presented. The improvement of
automatic scanning systems in the {CHORUS} experiment allows an efficient
search to be performed in emulsion for short-lived particles. Hence a search
for rare processes, like the associated charm production, becomes possible
through the observation of the double charm-decay topology with a very low
background. About 130,000 interactions located in the emulsion target
have been analysed. Three events with two charm decays have been observed in
the neutral-current sample with an estimated background of 0.180.05. The
relative rate of the associated charm cross-section in deep inelastic
interactions, has been
measured. One event with two charm decays has been observed in charged-current
interactions with an estimated background of 0.180.06 and the
upper limit on associated charm production in charged-current interactions at
90% C.L. has been found to be .Comment: 10 pages, 4 figure
- âŠ