13,730 research outputs found
Silicon material task review
The objectives of the Flat-plate Solar Array (FSA) Project Silicon Material Task are to evaluate technologies, new and old; to develop the most promising technologies; to establish practicality of the processes to meet production, energy use, and economic criteria; and to develop an information base on impurities in polysilicon and to determine their effects on solar cell performance. The approach involves determining process feasibility, setting milestones for the forced selection of the processes, and establishing the technical readiness of the integrated process
Josephson Junctions defined by a Nano-Plough
We define superconducting constrictions by ploughing a deposited Aluminum
film with a scanning probe microscope. The microscope tip is modified by
electron beam deposition to form a nano-plough of diamond-like hardness, what
allows the definition of highly transparent Josephson junctions. Additionally a
dc-SQUID is fabricated to verify appropriate functioning of the junctions. The
devices are easily integrated in mesoscopic devices as local radiation sources
and can be used as tunable on-chip millimeter wave sources
Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988
Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed
Oscillators and relaxation phenomena in Pleistocene climate theory
Ice sheets appeared in the northern hemisphere around 3 million years ago and
glacial-interglacial cycles have paced Earth's climate since then. Superimposed
on these long glacial cycles comes an intricate pattern of millennial and
sub-millennial variability, including Dansgaard-Oeschger and Heinrich events.
There are numerous theories about theses oscillations. Here, we review a number
of them in order to draw a parallel between climatic concepts and dynamical
system concepts, including, in particular, the relaxation oscillator,
excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all
theories of ice ages reviewed here feature a phenomenon of synchronisation
between internal climate dynamics and the astronomical forcing. However, these
theories differ in their bifurcation structure and this has an effect on the
way the ice age phenomenon could grow 3 million years ago. All theories on
rapid events reviewed here rely on the concept of a limit cycle in the ocean
circulation, which may be excited by changes in the surface freshwater surface
balance. The article also reviews basic effects of stochastic fluctuations on
these models, including the phenomenon of phase dispersion, shortening of the
limit cycle and stochastic resonance. It concludes with a more personal
statement about the potential for inference with simple stochastic dynamical
systems in palaeoclimate science.
Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages,
Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of
the Royal Society (Series A, Physical Mathematical and Engineering Sciences),
as a contribution to the Proceedings of the workshop on Stochastic Methods in
Climate Modelling, Newton Institute (23-27 August). Philosophical
Transactions of the Royal Society (Series A, Physical Mathematical and
Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on
request to author and on http://www.uclouvain.be/ito
Thermal expansion of the magnetically ordering intermetallics RTMg (R = Eu, Gd and T = Ag, Au)
We report measurements of the thermal expansion for two Eu- and two
Gd-based intermetallics which exhibit ferro- or antiferromagnetic phase
transitions. These materials show sharp positive (EuAgMg and GdAuMg) and
negative (EuAuMg and GdAgMg) peaks in the temperature dependence of the thermal
expansion coefficient which become smeared and/or displaced in an
external magnetic field. Together with specific heat data we determine the
initial pressure dependences of the transition temperatures at ambient pressure
using the Ehrenfest or Clausius-Clapeyron relation. We find large pressure
dependences indicating strong spin-phonon coupling, in particular for GdAgMg
and EuAuMg where a quantum phase transition might be reached at moderate
pressures of a few GPa.Comment: 6 pages, 3 figure
Biomechanics of DNA structures visualized by 4D electron microscopy
We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time.
From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective ânano-cuttingâ at a given point in the network, it was possible to obtain Youngâs modulus, and hence the stiffness, of the DNA filament at that position. This
experimental approach enables nanoscale mechanics studies of
macromolecules and should find applications in other domains of biological networks such as origamis
Impact of strong disorder on the static magnetic properties of the spin-chain compound BaCu2SiGeO7
The disordered quasi-1D magnet BaCu2SiGeO7 is considered as one of the best
physical realizations of the random Heisenberg chain model, which features an
irregular distribution of the exchange parameters and whose ground state is
predicted to be the scarcely investigated random-singlet state (RSS). Based on
extensive 29Si NMR and magnetization studies of BaCu2SiGeO7, combined with
numerical Quantum Monte Carlo simulations, we obtain remarkable quantitative
agreement with theoretical predictions of the random Heisenberg chain model and
strong indications for the formation of a random-singlet state at low
temperatures in this compound. As a local probe, NMR is a well-adapted
technique for studying the magnetism of disordered systems. In this case it
also reveals an additional local transverse staggered field (LTSF), which
affects the low-temperature properties of the RSS. The proposed model
Hamiltonian satisfactorily accounts for the temperature dependence of the NMR
line shapes.Comment: 10 pages, 7 figure
- âŠ