13,730 research outputs found

    Silicon material task review

    Get PDF
    The objectives of the Flat-plate Solar Array (FSA) Project Silicon Material Task are to evaluate technologies, new and old; to develop the most promising technologies; to establish practicality of the processes to meet production, energy use, and economic criteria; and to develop an information base on impurities in polysilicon and to determine their effects on solar cell performance. The approach involves determining process feasibility, setting milestones for the forced selection of the processes, and establishing the technical readiness of the integrated process

    Josephson Junctions defined by a Nano-Plough

    Full text link
    We define superconducting constrictions by ploughing a deposited Aluminum film with a scanning probe microscope. The microscope tip is modified by electron beam deposition to form a nano-plough of diamond-like hardness, what allows the definition of highly transparent Josephson junctions. Additionally a dc-SQUID is fabricated to verify appropriate functioning of the junctions. The devices are easily integrated in mesoscopic devices as local radiation sources and can be used as tunable on-chip millimeter wave sources

    Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    Get PDF
    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed

    Oscillators and relaxation phenomena in Pleistocene climate theory

    Get PDF
    Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited by changes in the surface freshwater surface balance. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages, Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), as a contribution to the Proceedings of the workshop on Stochastic Methods in Climate Modelling, Newton Institute (23-27 August). Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on request to author and on http://www.uclouvain.be/ito

    Thermal expansion of the magnetically ordering intermetallics RTMg (R = Eu, Gd and T = Ag, Au)

    Full text link
    We report measurements of the thermal expansion for two Eu+2^{+2}- and two Gd+3^{+3}-based intermetallics which exhibit ferro- or antiferromagnetic phase transitions. These materials show sharp positive (EuAgMg and GdAuMg) and negative (EuAuMg and GdAgMg) peaks in the temperature dependence of the thermal expansion coefficient α\alpha which become smeared and/or displaced in an external magnetic field. Together with specific heat data we determine the initial pressure dependences of the transition temperatures at ambient pressure using the Ehrenfest or Clausius-Clapeyron relation. We find large pressure dependences indicating strong spin-phonon coupling, in particular for GdAgMg and EuAuMg where a quantum phase transition might be reached at moderate pressures of a few GPa.Comment: 6 pages, 3 figure

    Biomechanics of DNA structures visualized by 4D electron microscopy

    Get PDF
    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective “nano-cutting” at a given point in the network, it was possible to obtain Young’s modulus, and hence the stiffness, of the DNA filament at that position. This experimental approach enables nanoscale mechanics studies of macromolecules and should find applications in other domains of biological networks such as origamis

    Impact of strong disorder on the static magnetic properties of the spin-chain compound BaCu2SiGeO7

    Full text link
    The disordered quasi-1D magnet BaCu2SiGeO7 is considered as one of the best physical realizations of the random Heisenberg chain model, which features an irregular distribution of the exchange parameters and whose ground state is predicted to be the scarcely investigated random-singlet state (RSS). Based on extensive 29Si NMR and magnetization studies of BaCu2SiGeO7, combined with numerical Quantum Monte Carlo simulations, we obtain remarkable quantitative agreement with theoretical predictions of the random Heisenberg chain model and strong indications for the formation of a random-singlet state at low temperatures in this compound. As a local probe, NMR is a well-adapted technique for studying the magnetism of disordered systems. In this case it also reveals an additional local transverse staggered field (LTSF), which affects the low-temperature properties of the RSS. The proposed model Hamiltonian satisfactorily accounts for the temperature dependence of the NMR line shapes.Comment: 10 pages, 7 figure
    • 

    corecore