616 research outputs found
Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm
The nitrogen fluorescence induced in air is used to detect ultra-high energy
cosmic rays and to measure their energy. The precise knowledge of the absolute
fluorescence yield is the key quantity to improve the accuracy on the cosmic
ray energy. The total yield has been measured in dry air using a 90Sr source
and a [300-430 nm] filter. The fluorescence yield in air is 4.23 0.20
photons per meter when normalized to 760 mmHg, 15 degrees C and with an
electron energy of 0.85 MeV. This result is consistent with previous
experiments made at various energies, but with an accuracy improved by a factor
of about 3. For the first time, the absolute continuous spectrum of nitrogen
excited by 90Sr electrons has also been measured with a spectrometer. Details
of this experiment are given in one of the author's PhD thesis [32].Comment: accepted for publication in NIM
Transport Coefficients of the Yukawa One Component Plasma
We present equilibrium molecular-dynamics computations of the thermal
conductivity and the two viscosities of the Yukawa one-component plasma. The
simulations were performed within periodic boundary conditions and Ewald sums
were implemented for the potentials, the forces, and for all the currents which
enter the Kubo formulas. For large values of the screening parameter, our
estimates of the shear viscosity and the thermal conductivity are in good
agreement with the predictions of the Chapman-Enskog theory.Comment: 11 pages, 2 figure
Ultra low energy results and their impact to dark matter and low energy neutrino physics
We present ultra low energy results taken with the novel Spherical
Proportional Counter. The energy threshold has been pushed down to about 25 eV
and single electrons are clearly collected and detected. To reach such
performance low energy calibration systems have been successfully developed: -
A pulsed UV lamp extracting photoelectrons from the inner surface of the
detector - Various radioactive sources allowing low energy peaks through
fluorescence processes. The bench mark result is the observation of a well
resolved peak at 270 eV due to carbon fluorescence which is unique performance
for such large-massive detector. It opens a new window in dark matter and low
energy neutrino search and may allow detection of neutrinos from a nuclear
reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure
Progress on a spherical TPC for low energy neutrino detection
The new concept of the spherical TPC aims at relatively large target masses
with low threshold and background, keeping an extremely simple and robust
operation. Such a device would open the way to detect the neutrino-nucleus
interaction, which, although a standard process, remains undetected due to the
low energy of the neutrino-induced nuclear recoils. The progress in the
development of the fist 1 m prototype at Saclay is presented. Other physics
goals of such a device could include supernova detection, low energy neutrino
oscillations and study of non-standard properties of the neutrino, among
others.Comment: 3 pages, talk given at the 9th Workshop on Topics in Astroparticle
and Underground Physics, Zaragoza, September 10-1
Pattern of Reaction Diffusion Front in Laminar Flows
Autocatalytic reaction between reacted and unreacted species may propagate as
solitary waves, namely at a constant front velocity and with a stationary
concentration profile, resulting from a balance between molecular diffusion and
chemical reaction. The effect of advective flow on the autocatalytic reaction
between iodate and arsenous acid in cylindrical tubes and Hele-Shaw cells is
analyzed experimentally and numerically using lattice BGK simulations. We do
observe the existence of solitary waves with concentration profiles exhibiting
a cusp and we delineate the eikonal and mixing regimes recently predicted.Comment: 4 pages, 3 figures. This paper report on experiments and simulations
in different geometries which test the theory of Boyd Edwards on flow
advection of chemical reaction front which just appears in PRL (PRL Vol
89,104501, sept2002
Wave Number of Maximal Growth in Viscous Magnetic Fluids of Arbitrary Depth
An analytical method within the frame of linear stability theory is presented
for the normal field instability in magnetic fluids. It allows to calculate the
maximal growth rate and the corresponding wave number for any combination of
thickness and viscosity of the fluid. Applying this method to magnetic fluids
of finite depth, these results are quantitatively compared to the wave number
of the transient pattern observed experimentally after a jump--like increase of
the field. The wave number grows linearly with increasing induction where the
theoretical and the experimental data agree well. Thereby a long-standing
controversy about the behaviour of the wave number above the critical magnetic
field is tackled.Comment: 19 pages, 15 figures, RevTex; revised version with a new figure and
references added. submitted to Phys Rev
Yukawa potentials in systems with partial periodic boundary conditions I : Ewald sums for quasi-two dimensional systems
Yukawa potentials are often used as effective potentials for systems as
colloids, plasmas, etc. When the Debye screening length is large, the Yukawa
potential tends to the non-screened Coulomb potential ; in this small screening
limit, or Coulomb limit, the potential is long ranged. As it is well known in
computer simulation, a simple truncation of the long ranged potential and the
minimum image convention are insufficient to obtain accurate numerical data on
systems. The Ewald method for bulk systems, i.e. with periodic boundary
conditions in all three directions of the space, has already been derived for
Yukawa potential [cf. Y., Rosenfeld, {\it Mol. Phys.}, \bm{88}, 1357, (1996)
and G., Salin and J.-M., Caillol, {\it J. Chem. Phys.}, \bm{113}, 10459,
(2000)], but for systems with partial periodic boundary conditions, the Ewald
sums have only recently been obtained [M., Mazars, {\it J. Chem. Phys.}, {\bf
126}, 056101 (2007)]. In this paper, we provide a closed derivation of the
Ewald sums for Yukawa potentials in systems with periodic boundary conditions
in only two directions and for any value of the Debye length. A special
attention is paid to the Coulomb limit and its relation with the
electroneutrality of systems.Comment: 40 pages, 5 figures and 4 table
Differences in mitochondrial efficiency explain individual variation in growth performance
The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate. Here we quantify individual variation in metabolic efficiency in terms of the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by liver and muscle mitochondria and examine its effects, both on the rate of protein synthesis within these tissues and on the rate of whole-body growth of individually fed juvenile brown trout (Salmo trutta) receiving either a high or low food ration. As expected, fish on the high ration on average gained more in body mass and protein content than those maintained on the low ration. Yet, growth performance varied more than 10-fold among individuals on the same ration, resulting in some fish on low rations growing faster than others on the high ration. This variation in growth for a given ration was related to individual differences in mitochondrial properties: a high whole-body growth performance was associated with high mitochondrial efficiency of ATP production in the liver. Our results show for the first time, to our knowledge, that among-individual variation in the efficiency with which substrates are converted into ATP can help explain marked variation in growth performance, independent of food intake. This study highlights the existence of inter-individual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in whole-animal performance
Differences in mitochondrial efficiency explain individual variation in growth performance
The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate. Here we quantify individual variation in metabolic efficiency in terms of the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by liver and muscle mitochondria and examine its effects, both on the rate of protein synthesis within these tissues and on the rate of whole-body growth of individually fed juvenile brown trout (Salmo trutta) receiving either a high or low food ration. As expected, fish on the high ration on average gained more in body mass and protein content than those maintained on the low ration. Yet, growth performance varied more than 10-fold among individuals on the same ration, resulting in some fish on low rations growing faster than others on the high ration. This variation in growth for a given ration was related to individual differences in mitochondrial properties: a high whole-body growth performance was associated with high mitochondrial efficiency of ATP production in the liver. Our results show for the first time, to our knowledge, that among-individual variation in the efficiency with which substrates are converted into ATP can help explain marked variation in growth performance, independent of food intake. This study highlights the existence of inter-individual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in whole-animal performance
Time-dependent density-functional theory approach to nonlinear particle-solid interactions in comparison with scattering theory
An explicit expression for the quadratic density-response function of a
many-electron system is obtained in the framework of the time-dependent
density-functional theory, in terms of the linear and quadratic
density-response functions of noninteracting Kohn-Sham electrons and functional
derivatives of the time-dependent exchange-correlation potential. This is used
to evaluate the quadratic stopping power of a homogeneous electron gas for slow
ions, which is demonstrated to be equivalent to that obtained up to second
order in the ion charge in the framework of a fully nonlinear scattering
approach. Numerical calculations are reported, thereby exploring the range of
validity of quadratic-response theory.Comment: 14 pages, 3 figures. To appear in Journal of Physics: Condensed
Matte
- …