45 research outputs found
Highly non-Gaussian states created via cross-Kerr nonlinearity
We propose a feasible scheme for generation of strongly non-Gaussian states
using the cross-Kerr nonlinearity. The resultant states are highly
non-classical states of electromagnetic field and exhibit negativity of their
Wigner function, sub-Poissonian photon statistics, and amplitude squeezing.
Furthermore, the Wigner function has a distinctly pronounced ``banana'' or
``crescent'' shape specific for the Kerr-type interactions, which so far was
not demonstrated experimentally. We show that creating and detecting such
states should be possible with the present technology using electromagnetically
induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure
Towards high-speed optical quantum memories
Quantum memories, capable of controllably storing and releasing a photon, are
a crucial component for quantum computers and quantum communications. So far,
quantum memories have operated with bandwidths that limit data rates to MHz.
Here we report the coherent storage and retrieval of sub-nanosecond low
intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium
vapor. The novel memory interaction takes place via a far off-resonant
two-photon transition in which the memory bandwidth is dynamically generated by
a strong control field. This allows for an increase in data rates by a factor
of almost 1000 compared to existing quantum memories. The memory works with a
total efficiency of 15% and its coherence is demonstrated by directly
interfering the stored and retrieved pulses. Coherence times in hot atomic
vapors are on the order of microsecond - the expected storage time limit for
this memory.Comment: 13 pages, 5 figure
Propagation of Squeezed Vacuum under Electromagnetically Induced Transparency
We experimentally and theoretically analyze the transmission of
continuous-wave and pulsed squeezed vacuum through rubidium vapor under the
conditions of electromagnetically induced transparency. Frequency- and
time-domain homodyne tomography is used to measure the quadrature noise and
reconstruct the quantum states of the transmitted light. A simple theoretical
model explains the spectrum and degradation of the transmitted squeezing with
high precision
Modelling of an hybrid electric powertrain for simulation under transient conditions
International audienc
"Study of an optimization criterion of mounting blocks for drivability Ă©valuation of an electric vehicle â "
International audienc
Influence of high rates of supplemental cooled EGR on NOx and PM emissions of an automotive HSDI diesel engine using an LP EGR loop
International audienc
Simulation study of some techniques to reduce pollutant emissions of medium-speed Diesel engines used for naval propulsion
International audienc
A Phenomenological Heat Transfer Model of SI Engines â Application to the Simulation of a Full-Hybrid Vehicle Un modĂšle phĂ©nomĂ©nologique de transfert thermique au sein de moteurs Ă allumage commandĂ© â Application Ă la simulation dâun vĂ©hicule full-hybride
A hybrid thermal-electric vehicle allows some significant fuel economy due to its peculiar use of the Internal Combustion Engine (ICE) that runs with better efficiency. However, this propulsion system impacts its thermal behaviour, especially during its warm-up after a cold start. The ICE can indeed be shut down when the vehicle is stopped (Stop&Start system) and during full-electric propulsion mode (allowed at light speed and load if the battery state of charge is high enough) resulting in a lack of heat source and a slow down of the warm-up. Moreover, the use of the ICE at higher loads while charging the batteries provides an increase of the heating power generated by the combustion. Control strategies in a hybrid vehicle (energy repartition between the two propulsions: thermal and electric) have a significant effect on its final consumption. Therefore, the simulation of hybrid vehicles is then useful to evaluate the efficiency of these strategies. However, the consideration of the warm-up of the ICE in such a propulsion system was done in only few published studies. A simulation tool using the Amesim software has been developed in order to simulate the warm-up of an ICE used in a hybrid parallel propulsion system. The corresponding model is developed in order to take into account the thermal phenomena occurring between the different ICE components. Thus, a thermodynamic model is coupled with a thermal model of the metallic parts and the different fluid loops (water and oil). Their mean temperature dependence with different parameters like speed, the load, the cylinder geometry and the spark advance, is studied with the aim at reducing fuel consumption. The thermal model of the engine is finally integrated in a simulation of the whole vehicle. The thermal behaviour of a parallel electric full-hybrid vehicle using a spark ignition engine is then presented using this simulation tool. The simulation results show the impact of the peculiar use of the ICE on its thermal behaviour. Especially, it appears that the efficiency of the engine is less penalized than expected by the cold state of the engine. Finally, a parametric study of the modeled engine and a research of a possible optimization of the engine efficiency and the warm-up period are done. <br> Un vĂ©hicule hybride Ă©lectrique permet des Ă©conomies de carburant non nĂ©gligeables grĂące Ă une meilleure utilisation du Moteur Ă Combustion Interne (MCI) sur des points de rĂ©gime-charge Ă meilleurs rendements. Cependant ce fonctionnement particulier a un impact sur le comportement thermique du MCI, en particulier, pendant sa pĂ©riode de chauffe aprĂšs un dĂ©part Ă froid. En effet, le moteur peut ĂȘtre arrĂȘtĂ© lorsque le vĂ©hicule est Ă lâarrĂȘt (systĂšme Stop&Start) ainsi que pendant les phases de propulsion en Ă©lectrique pur (possible Ă vitesse faible si lâĂ©tat de charge de la batterie est suffisamment Ă©levĂ©) entraĂźnant un manque de source de chaleur et donc un ralentissement du rĂ©chauffement du moteur. De plus, lâutilisation du MCI avec des charges plus importantes lors de la recharge des batteries provoque une augmentation de la puissance thermique disponible issue de la combustion. Les stratĂ©gies de contrĂŽle dâun vĂ©hicule hybride (rĂ©partition dâĂ©nergie entre les deux types de propulsion : thermique et Ă©lectrique) ont un effet important sur sa consommation finale. Ainsi, la simulation phĂ©nomĂ©nologique 0D de vĂ©hicules hybrides est utile afin dâĂ©valuer lâefficacitĂ© de ces stratĂ©gies. Cependant, il existe un nombre trĂšs limitĂ© dâĂ©tudes oĂč la pĂ©riode de chauffe du moteur thermique est prise en compte dans ce type de simulations. Un outil de simulation utilisant le logiciel Amesim a Ă©tĂ© dĂ©veloppĂ© afin de simuler la montĂ©e en tempĂ©rature du MCI utilisĂ© dans un systĂšme de propulsion hybride parallĂšle. Le modĂšle est construit afin de prendre en compte les phĂ©nomĂšnes thermiques ayant lieu au sein de cet Ă©lĂ©ment. Un modĂšle thermodynamique est couplĂ© Ă un modĂšle de transferts thermiques reprĂ©sentant les diffĂ©rentes parties mĂ©talliques ainsi que les diffĂ©rents fluides (eau de refroidissement et huile de lubrification). La dĂ©pendance de leur tempĂ©rature moyenne en fonction de diffĂ©rents paramĂštres comme la vitesse, ou bien la charge est Ă©tudiĂ©e dans le but de rĂ©duire la consommation de carburant. Le modĂšle thermique du moteur Ă combustion interne est finalement intĂ©grĂ© dans une simulation dâun vĂ©hicule complet. Le comportement thermique dâun vĂ©hicule full-hybride Ă©lectrique parallĂšle utilisant un moteur Ă allumage commandĂ© est alors prĂ©sentĂ© utilisant cet outil de simulation. Les rĂ©sultats de simulation montrent un impact certain de lâutilisation particuliĂšre du MCI dans ce type de vĂ©hicule sur le comportement thermique global de cet Ă©lĂ©ment. En particulier, il semble que le rendement du moteur thermique est moins pĂ©nalisĂ© que ce qui Ă©tait attendu lors du fonctionnement Ă faible tempĂ©rature. Finalement, une Ă©tude paramĂ©trique du moteur modĂ©lisĂ© ainsi quâune recherche sur les possibilitĂ©s dâoptimisation du fonctionnement du moteur lors de la phase de montĂ©e en tempĂ©rature sont rĂ©alisĂ©es