16,894 research outputs found
Quantum spin mixing in a binary mixture of spin-1 atomic condensates
We study quantum spin mixing in a binary mixture of spin-1 condensates
including coherent interspecies mixing process, using the familiar spinor
condensates of Rb and Na atoms in the ground lower hyperfine F=1
manifolds as prototype examples. Within the single spatial mode approximation
for each of the two spinor condensates, the mixing dynamics reduce to that of
three coupled nonlinear pendulums with clear physical interpretations. Using
suitably prepared initial states, it is possible to determine the interspecies
singlet-pairing as well as spin-exchange interactions from the subsequent
mixing dynamics.Comment: 6 pages, 3 figure
Higher order symmetry-protected topological states for interacting bosons and fermions
Higher-order topological insulators have a modified bulk-boundary
correspondence compared to other topological phases: instead of gapless edge or
surface states, they have gapped edges and surfaces, but protected modes at
corners or hinges. Here, we explore symmetry protected topological phases in
strongly interacting many-body systems with this generalized bulk-boundary
correspondence. We introduce several exactly solvable bosonic lattice models as
candidates for interacting higher order symmetry protected topological (HOSPT)
phases protected by spatial symmetries, and develop a topological field theory
that captures the non-trivial nature of the gapless corner and hinge modes. We
show how, for rotational symmetry, this field theory leads to a natural
relationship between HOSPT phases and conventional SPT phases with an enlarged
internal symmetry group. We also explore the connection between bosonic and
fermionic HOSPT phases in the presence of strong interactions, and comment on
the implications of this connection for the classification of interacting
fermionic HOSPT phases. Finally, we explore how gauging internal symmetries of
these phases leads to topological orders characterized by nontrivial braiding
statistics between topological vortex excitations and geometrical defects
related to the spatial symmetry.Comment: 24 pages, 15 figures. updated referenc
Switchable coupling between charge and flux qubits
We propose a hybrid quantum circuit with both charge and flux qubits
connected to a large Josephson junction that gives rise to an effective
inter-qubit coupling controlled by the external magnetic flux. This switchable
inter-qubit coupling can be used to transfer back and forth an arbitrary
superposition state between the charge qubit and the flux qubit working at the
optimal point. The proposed hybrid circuit provides a promising quantum memory
because the flux qubit at the optimal point can store the tranferred quantum
state for a relatively long time.Comment: 5 pages, 1 figur
Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit
We analyze the optical selection rules of the microwave-assisted transitions
in a flux qubit superconducting quantum circuit (SQC). We show that the
parities of the states relevant to the superconducting phase in the SQC are
well-defined when the external magnetic flux , then the
selection rules are same as the ones for the electric-dipole transitions in
usual atoms. When , the symmetry of the potential of
the artificial "atom'' is broken, a so-called -type "cyclic"
three-level atom is formed, where one- and two-photon processes can coexist. We
study how the population of these three states can be selectively transferred
by adiabatically controlling the electromagnetic field pulses. Different from
-type atoms, the adiabatic population transfer in our three-level
-atom can be controlled not only by the amplitudes but also by the
phases of the pulses
A qubit strongly-coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation
We investigate the spontaneous emission spectrum of a qubit in a lossy
resonant cavity. We use neither the rotating-wave approximation nor the Markov
approximation. The qubit-cavity coupling strength is varied from weak, to
strong, even to lower bound of the ultra-strong. For the weak-coupling case,
the spontaneous emission spectrum of the qubit is a single peak, with its
location depending on the spectral density of the qubit environment. Increasing
the qubit-cavity coupling increases the asymmetry (the positions about the
qubit energy spacing and heights of the two peaks) of the two spontaneous
emission peaks (which are related to the vacuum Rabi splitting) more.
Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry
of the splitting peaks becomes larger, when the qubit-cavity coupling strength
is increased. However, for a qubit in an Ohmic bath, the height asymmetry of
the spectral peaks is inverted from the same case of the low-frequency bath,
when the qubit is strongly coupled to the cavity. Increasing the qubit-cavity
coupling to the lower bound of the ultra-strong regime, the height asymmetry of
the left and right peak heights are inverted, which is consistent with the same
case of low-frequency bath, only relatively weak. Therefore, our results
explicitly show how the height asymmetry in the spontaneous emission spectrum
peaks depends not only on the qubit-cavity coupling, but also on the type of
intrinsic noise experienced by the qubit.Comment: 10pages, 5 figure
- …