1,397 research outputs found
A compact design for the Josephson mixer: the lumped element circuit
We present a compact and efficient design in terms of gain, bandwidth and
dynamical range for the Josephson mixer, the superconducting circuit performing
three-wave mixing at microwave frequencies. In an all lumped-element based
circuit with galvanically coupled ports, we demonstrate non degenerate
amplification for microwave signals over a bandwidth up to 50 MHz for a power
gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70
and its saturation power reaches dBm.Comment: 5 pages, 4 figure
Measuring the distribution of current fluctuations through a Josephson junction with very short current pulses
We propose to probe the distribution of current fluctuations by means of the
escape probability histogram of a Josephson junction (JJ), obtained using very
short bias current pulses in the adiabatic regime, where the low-frequency
component of the current fluctuations plays a crucial role. We analyze the
effect of the third cumulant on the histogram in the small skewness limit, and
address two concrete examples assuming realistic parameters for the JJ. In the
first one we study the effects due to fluctuations produced by a tunnel
junction, finding that the signature of higher cumulants can be detected by
taking the derivative of the escape probability with respect to current. In
such a realistic situation, though, the determination of the whole distribution
of current fluctuations requires an amplification of the cumulants. As a second
example we consider magnetic flux fluctuations acting on a SQUID produced by a
random telegraph source of noise.Comment: 6 pages, 6 figures; final versio
The Dynamical State of Barnard 68: A Thermally Supported, Pulsating Dark Cloud
We report sensitive, high resolution molecular-line observations of the dark
cloud Barnard 68 obtained with the IRAM 30-m telescope. We analyze
spectral-line observations of C18O, CS(2--1), C34S(2--1), and N2H+(1--0) in
order to investigate the kinematics and dynamical state of the cloud. We find
extremely narrow linewidths in the central regions of the cloud. These narrow
lines are consistent with thermally broadened profiles for the measured gas
temperature of 10.5 K. We determine the thermal pressure to be a factor 4 -- 5
times greater than the non-thermal (turbulent) pressure in the central regions
of the cloud, indicating that thermal pressure is the primary source of support
against gravity in this cloud. This confirms the inference of a thermally
supported cloud drawn previously from deep infrared extinction measurements.
The rotational kinetic energy is found to be only a few percent of the
gravitational potential energy, indicating that the contribution of rotation to
the overall stability of the cloud is insignificant. Finally, our observations
show that CS line is optically thick and self-reversed across nearly the entire
projected surface of the cloud. The shapes of the self-reversed profiles are
asymmetric and are found to vary across the cloud in such a manner that the
presence of both inward and outward motions are observed within the cloud.
Moreover, these motions appear to be globally organized in a clear and
systematic alternating spatial pattern which is suggestive of a small
amplitude, non-radial oscillation or pulsation of the outer layers of the cloud
about an equilibrium configuration.Comment: To appear in the Astrophysical Journal; 23 pages, 8 figures;
Manuscript and higher resolution images can be obtained at
http://cfa-www.harvard.edu/~ebergin/pubs_html/b68_vel.htm
The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. XI. Lupus Observed With IRAC and MIPS
We present c2d Spitzer/IRAC observations of the Lupus I, III and IV dark
clouds and discuss them in combination with optical and near-infrared and c2d
MIPS data. With the Spitzer data, the new sample contains 159 stars, 4 times
larger than the previous one. It is dominated by low- and very-low mass stars
and it is complete down to M 0.1M. We find 30-40 % binaries
with separations between 100 to 2000 AU with no apparent effect in the disk
properties of the members. A large majority of the objects are Class II or
Class III objects, with only 20 (12%) of Class I or Flat spectrum sources. The
disk sample is complete down to ``debris''-like systems in stars as small as M
0.2 M and includes sub-stellar objects with larger IR
excesses. The disk fraction in Lupus is 70 -- 80%, consistent with an age of 1
-- 2 Myr. However, the young population contains 20% optically thick accretion
disks and 40% relatively less flared disks. A growing variety of inner disk
structures is found for larger inner disk clearings for equal disk masses.
Lupus III is the most centrally populated and rich, followed by Lupus I with a
filamentary structure and by Lupus IV, where a very high density core with
little star-formation activity has been found. We estimate star formation rates
in Lupus of 2 -- 10 M Myr and star formation efficiencies of a
few percent, apparently correlated with the associated cloud masses.Comment: Accepted for publication in the ApJS. Contains 101 pages, 23 figures,
and 13 tables. A version with full resolution figures can be found at
http://peggysue.as.utexas.edu/SIRTF/PAPERS/pap102.pub.pd
Ice and Dust in the Quiescent Medium of Isolated Dense Cores
The relation between ices in the envelopes and disks surrounding YSOs and
those in the quiescent interstellar medium is investigated. For a sample of 31
stars behind isolated dense cores, ground-based and Spitzer spectra and
photometry in the 1-25 um wavelength range are combined. The baseline for the
broad and overlapping ice features is modeled, using calculated spectra of
giants, H2O ice and silicates. The adopted extinction curve is derived
empirically. Its high resolution allows for the separation of continuum and
feature extinction. The extinction between 13-25 um is ~50% relative to that at
2.2 um. The strengths of the 6.0 and 6.85 um absorption bands are in line with
those of YSOs. Thus, their carriers, which, besides H2O and CH3OH, may include
NH4+, HCOOH, H2CO and NH3, are readily formed in the dense core phase, before
stars form. The 3.53 um C-H stretching mode of solid CH3OH was discovered. The
CH3OH/H2O abundance ratios of 5-12% are larger than upper limits in the Taurus
molecular cloud. The initial ice composition, before star formation occurs,
therefore depends on the environment. Signs of thermal and energetic processing
that were found toward some YSOs are absent in the ices toward background
stars. Finally, the peak optical depth of the 9.7 um band of silicates relative
to the continuum extinction at 2.2 um is significantly shallower than in the
diffuse interstellar medium. This extends the results of Chiar et al. (2007) to
a larger sample and higher extinctions.Comment: Accepted for publication in The Astrophysical Journa
Sensitivity and parameter-estimation precision for alternate LISA configurations
We describe a simple framework to assess the LISA scientific performance
(more specifically, its sensitivity and expected parameter-estimation precision
for prescribed gravitational-wave signals) under the assumption of failure of
one or two inter-spacecraft laser measurements (links) and of one to four
intra-spacecraft laser measurements. We apply the framework to the simple case
of measuring the LISA sensitivity to monochromatic circular binaries, and the
LISA parameter-estimation precision for the gravitational-wave polarization
angle of these systems. Compared to the six-link baseline configuration, the
five-link case is characterized by a small loss in signal-to-noise ratio (SNR)
in the high-frequency section of the LISA band; the four-link case shows a
reduction by a factor of sqrt(2) at low frequencies, and by up to ~2 at high
frequencies. The uncertainty in the estimate of polarization, as computed in
the Fisher-matrix formalism, also worsens when moving from six to five, and
then to four links: this can be explained by the reduced SNR available in those
configurations (except for observations shorter than three months, where five
and six links do better than four even with the same SNR). In addition, we
prove (for generic signals) that the SNR and Fisher matrix are invariant with
respect to the choice of a basis of TDI observables; rather, they depend only
on which inter-spacecraft and intra-spacecraft measurements are available.Comment: 17 pages, 4 EPS figures, IOP style, corrected CQG versio
Coupling a quantum dot, fermionic leads and a microwave cavity on-chip
We demonstrate a hybrid architecture consisting of a quantum dot circuit
coupled to a single mode of the electromagnetic field. We use single wall
carbon nanotube based circuits inserted in superconducting microwave cavities.
By probing the nanotube-dot using a dispersive read-out in the Coulomb blockade
and the Kondo regime, we determine an electron-photon coupling strength which
should enable circuit QED experiments with more complex quantum dot circuits.Comment: 4 pages, 4 figure
The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. VIII. Serpens Observed with MIPS
We present maps of 1.5 deg^2 of the Serpens dark cloud at 24, 70, and 160 μm observed with the Spitzer Space Telescope MIPS camera. We describe the observations and briefly discuss the data processing carried out by the c2d team on these data. More than 2400 compact sources have been extracted at 24 μm, nearly 100 at 70 μm, and four at 160 μm. We estimate completeness limits for our 24 μm survey from Monte Carlo tests with artificial sources inserted into the Spitzer maps. We compare source counts, colors, and magnitudes in the Serpens cloud to two reference data sets: a 0.50 deg^2 set on a low-extinction region near the dark cloud, and a 5.3 deg^2 subset of the SWIRE ELAIS N1 data that was processed through our pipeline. These results show that there is an easily identifiable population of young stellar object candidates in the Serpens cloud that is not present in either of the reference data sets. We also show a comparison of visual extinction and cool dust emission illustrating a close correlation between the two and find that the most embedded YSO candidates are located in the areas of highest visual extinction
The Luminosities of Protostars in the Spitzer c2d and Gould Belt Legacy Clouds
Motivated by the long-standing "luminosity problem" in low-mass star
formation whereby protostars are underluminous compared to theoretical
expectations, we identify 230 protostars in 18 molecular clouds observed by two
Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We
compile complete spectral energy distributions, calculate Lbol for each source,
and study the protostellar luminosity distribution. This distribution extends
over three orders of magnitude, from 0.01 Lsun - 69 Lsun, and has a mean and
median of 4.3 Lsun and 1.3 Lsun, respectively. The distributions are very
similar for Class 0 and Class I sources except for an excess of low luminosity
(Lbol < 0.5 Lsun) Class I sources compared to Class 0. 100 out of the 230
protostars (43%) lack any available data in the far-infrared and submillimeter
(70 um < wavelength < 850 um) and have Lbol underestimated by factors of 2.5 on
average, and up to factors of 8-10 in extreme cases. Correcting these
underestimates for each source individually once additional data becomes
available will likely increase both the mean and median of the sample by 35% -
40%. We discuss and compare our results to several recent theoretical studies
of protostellar luminosities and show that our new results do not invalidate
the conclusions of any of these studies. As these studies demonstrate that
there is more than one plausible accretion scenario that can match
observations, future attention is clearly needed. The better statistics
provided by our increased dataset should aid such future work.Comment: Accepted for publication in AJ. 21 pages, 10 figures, 4 table
- …