4 research outputs found

    A classification of four-state spin edge Potts models

    Full text link
    We classify four-state spin models with interactions along the edges according to their behavior under a specific group of symmetry transformations. This analysis uses the measure of complexity of the action of the symmetries, in the spirit of the study of discrete dynamical systems on the space of parameters of the models, and aims at uncovering solvable ones. We find that the action of these symmetries has low complexity (polynomial growth, zero entropy). We obtain natural parametrizations of various models, among which an unexpected elliptic parametrization of the four-state chiral Potts model, which we use to localize possible integrability conditions associated with high genus curves.Comment: 5 figure

    Random Matrix Theory and higher genus integrability: the quantum chiral Potts model

    Full text link
    We perform a Random Matrix Theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L=8. Our analysis gives clear evidence of a Gaussian Orthogonal Ensemble statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of ``higher genus integrability''.Comment: 23 pages and 10 figure
    corecore