5,624 research outputs found

    Intrinsic time gravity and the Lichnerowicz-York equation

    Full text link
    We investigate the effect on the Hamiltonian structure of general relativity of choosing an intrinsic time to fix the time slicing. 3-covariance with momentum constraint is maintained, but the Hamiltonian constraint is replaced by a dynamical equation for the trace of the momentum. This reveals a very simple structure with a local reduced Hamiltonian. The theory is easily generalised; in particular, the square of the Cotton-York tensor density can be added as an extra part of the potential while at the same time maintaining the classic 2 + 2 degrees of freedom. Initial data construction is simple in the extended theory; we get a generalised Lichnerowicz-York equation with nice existence and uniqueness properties. Adding standard matter fields is quite straightforward.Comment: 4 page

    Andreev Bound States in the Kondo Quantum Dots Coupled to Superconducting Leads

    Full text link
    We have studied the Kondo quantum dot coupled to two superconducting leads and investigated the subgap Andreev states using the NRG method. Contrary to the recent NCA results [Clerk and Ambegaokar, Phys. Rev. B 61, 9109 (2000); Sellier et al., Phys. Rev. B 72, 174502 (2005)], we observe Andreev states both below and above the Fermi level.Comment: 5 pages, 5 figure

    Three-geometry and reformulation of the Wheeler-DeWitt equation

    Get PDF
    A reformulation of the Wheeler-DeWitt equation which highlights the role of gauge-invariant three-geometry elements is presented. It is noted that the classical super-Hamiltonian of four-dimensional gravity as simplified by Ashtekar through the use of gauge potential and densitized triad variables can furthermore be succinctly expressed as a vanishing Poisson bracket involving three-geometry elements. This is discussed in the general setting of the Barbero extension of the theory with arbitrary non-vanishing value of the Immirzi parameter, and when a cosmological constant is also present. A proposed quantum constraint of density weight two which is polynomial in the basic conjugate variables is also demonstrated to correspond to a precise simple ordering of the operators, and may thus help to resolve the factor ordering ambiguity in the extrapolation from classical to quantum gravity. Alternative expression of a density weight one quantum constraint which may be more useful in the spin network context is also discussed, but this constraint is non-polynomial and is not motivated by factor ordering. The article also highlights the fact that while the volume operator has become a preeminient object in the current manifestation of loop quantum gravity, the volume element and the Chern-Simons functional can be of equal significance, and need not be mutually exclusive. Both these fundamental objects appear explicitly in the reformulation of the Wheeler-DeWitt constraint.Comment: 10 pages, LaTeX fil

    QED corrections to isospin-related decay rates of charged and neutral B mesons

    Full text link
    We estimate the isospin-violating QED radiative corrections to the charged-to-neutral ratios of the decay rates for B^+ and B^0 in non-leptonic B meson decays. In particular, these corrections are potentially important for precision measurement of the charged-to-neutral production ratio of B meson in e^+e^- annihilation. We calculate explicitly the QED corrections to the ratios of two different types of decay rates \Gamma(B^+ \to J/\psi K^+)/\Gamma(B^0 \to J/\psi K^0) and \Gamma(B^+ \to D^+_S \bar{D^0})/\Gamma(B^0 \to D^+_S D^-) taking into account the form factors of the mesons based on the vector meson dominance model, and compare them with the results obtained for the point-like mesons.Comment: 7 pages, 9 eps figure

    Concurrent Tribal and State Jurisdiction Under Public Law 280

    Get PDF

    Concurrent Tribal and State Jurisdiction Under Public Law 280

    Get PDF

    Equivalence between various versions of the self-dual action of the Ashtekar formalism

    Full text link
    Different aspects of the self-dual (anti-self-dual) action of the Ashtekar canonical formalism are discussed. In particular, we study the equivalences and differences between the various versions of such an action. Our analysis may be useful for the development of an Ashtekar formalism in eight dimensions.Comment: 10 pages, Latex, minor correction

    Quantum Key Distribution Using Quantum Faraday Rotators

    Full text link
    We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against collective attacks for multi-photon source up to two photons on a noisy environment. It is also robust against impersonation attacks. The protocol may be implemented experimentally with the current spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure

    Anomalous Transmission Phase of a Kondo-Correlated Quantum Dot

    Full text link
    We study phase evolution of transmission through a quantum dot with Kondo correlations. By considering a model that includes nonresonant transmission as well as the Anderson impurity, we explain unusually large phase evolution of about π\pi in the Kondo valley observed in recent experiments. We argue that this anomalous phase evolution is a universal property that can be found in the high-temperature Kondo phase in the presence of the time-reversal symmetry.Comment: 5 pages, 3 figure
    corecore