2,152 research outputs found

    Decaying dark matter: a stacking analysis of galaxy clusters to improve on current limits

    Full text link
    We show that a stacking approach to galaxy clusters can improve current limits on decaying dark matter by a factor ≳5−100\gtrsim 5-100, with respect to a single source analysis, for all-sky instruments such as Fermi-LAT. Based on the largest sample of X-ray-selected galaxy clusters available to date (the MCXC meta-catalogue), we provide all the astrophysical information, in particular the astrophysical term for decaying dark matter, required to perform an analysis with current instruments.Comment: 6 pages, 3 figures, supplementary file available on demand, accepted for publication in PR

    Spallation dominated propagation of Heavy Cosmic Rays and the Local Interstellar Medium (LISM)

    Full text link
    Measurements of ultra heavy nuclei at GeV/n energies in the galactic cosmic radiation address the question of the sources (nucleosynthetic s- and r-processes). As such, the determination of CR source abundances is a promising way to discriminate between existing nucleosynthesis models. For primary species (nuclei present and accelerated at sources), it is generally assumed that the relative propagated abundances, if they are close in mass, are not too different from their relative source abundances. Besides, the range of the correction factor associated to propagation has been estimated in weighted slab models only. Heavy CRs that are detected near Earth were accelerated from regions that are closer to us than were the light nuclei. Hence, the geometry of sources in the Solar neighbourhood, and as equally important, the geometry of gas in the same region, must be taken into account. In this paper, a two zone diffusion model is used, and as was previously investigated for radioactive species, we report here on the impact of the local interstellar medium (LISM) feature (under-dense medium over a scale ~100 pc) on primary and secondary stable nuclei propagated abundances. Going down to Fe nuclei, the connection between heavy and light abundances is also inspected. A general trend is found that decreases the UHCR source abundances relative to the HCR ones. This could have an impact on the level of r-process required to reproduce the data.Comment: 12 pages, 9 figures, accepted by A&A. Comparison with truncated weighted slab and discussion added. Figure 8 modified. New appendix on truncated weighted slab techniqu

    Infinite barbarians

    Get PDF
    This paper discusses an infinite regress that looms behind a certain kind of historical explanation. The movement of one barbarian group is often explained by the movement of others, but those movements in turn call for an explanation. While their explanation can again be the movement of yet another group of barbarians, if this sort of explanation does not stop somewhere we are left with an infinite regress of barbarians. While that regress would be vicious, it cannot be accommodated by several general views about what viciousness in infinite regresses amounts to. This example is additional evidence that we should prefer a pluralist approach to infinite regresses

    Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy

    Full text link
    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS), we find Reticulum II's J-factor to be among the largest of any Milky Way dSph. We have checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum II may provide a unique window on dark matter particle properties.Comment: 5 pages, 4 figures. Match the ApJL accepted versio

    New Constraints from PAMELA anti-proton data on Annihilating and Decaying Dark Matter

    Get PDF
    Recently the PAMELA experiment has released its updated anti-proton flux and anti-proton to proton flux ratio data up to energies of ~200GeV. With no clear excess of cosmic ray anti-protons at high energies, one can extend constraints on the production of anti-protons from dark matter. In this letter, we consider both the cases of dark matter annihilating and decaying into standard model particles that produce significant numbers of anti-protons. We provide two sets of constraints on the annihilation cross-sections/decay lifetimes. In the one set of constraints we ignore any source of anti-protons other than dark matter, which give the highest allowed cross-sections/inverse lifetimes. In the other set we include also anti-protons produced in collisions of cosmic rays with interstellar medium nuclei, getting tighter but more realistic constraints on the annihilation cross-sections/decay lifetimes.Comment: 7 pages, 3 figures, 3 table

    The incidence and make up of ability grouped sets in the UK primary school

    Get PDF
    The adoption of setting in the primary school (pupils ability grouped across classes for particular subjects) emerged during the 1990s as a means to raise standards. Recent research based on 8875 children in the Millennium Cohort Study showed that 25.8% of children in Year 2 were set for literacy and mathematics and a further 11.2% of children were set for mathematics or literacy alone. Logistic regression analysis showed that the best predictors of being in the top set for literacy or mathematics were whether the child was born in the Autumn or Winter and cognitive ability scores. Boys were significantly more likely than girls to be in the bottom literacy set. Family circumstances held less importance for setting placement compared with the child’s own characteristics, although they were more important in relation to bottom set placement. Children in bottom sets were significantly more likely to be part of a long-term single parent household, have experienced poverty, and not to have a mother with qualifications at NVQ3 or higher levels. The findings are discussed in relation to earlier research and the implications for schools are set out

    Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future Îł-ray observatories - I. The classical dwarf spheroidal galaxies

    Get PDF
    Due to their large dynamical mass-to-light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in Îł-rays. We examine their detectability by present and future Îł-ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher Îł-ray flux, their larger angular extent can make them less attractive targets for background-dominated instruments; (ii) we derive DM profiles and the astrophysical J-factor (which parametrizes the expected Îł-ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split-power-law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J-factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J-factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∌20 kpc with cored haloes can be up to ∌50 times worse than when estimated assuming them to be point-like. Even for the satellite-borne Fermi-Large Area Telescope (Fermi-LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≀γprior≀ 1 provides J-factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J-factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half-light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of Îł-ray observatories; (v) the ‘classical' dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi-LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass â‰Č 700 GeV. However, even the Fermi-LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla' Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint' dwarfs are likely to be better targets and will be considered in future wor

    Micro-Capsules in Shear Flow

    Full text link
    This paper deals with flow-induced shape transitions of elastic capsules. The state of the art concerning both theory and experiments is briefly reviewed starting with dynamically induced small deformation of initially spherical capsules and the formation of wrinkles on polymerized membranes. Initially non-spherical capsules show tumbling and tank-treading motion in shear flow. Theoretical descriptions of the transition between these two types of motion assuming a fixed shape are at variance with the full capsule dynamics obtained numerically. To resolve the discrepancy, we expand the exact equations of motion for small deformations and find that shape changes play a dominant role. We classify the dynamical phase transitions and obtain numerical and analytical results for the phase boundaries as a function of viscosity contrast, shear and elongational flow rate. We conclude with perspectives on timedependent flow, on shear-induced unbinding from surfaces, on the role of thermal fluctuations, and on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure
    • 

    corecore