1,355 research outputs found
An empirical mean-field model of symmetry-breaking in a turbulent wake
Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be disentangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high-Reynolds number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable turbulent flows from experimental measurements, with broad implications for other multiscale systems
Phonons in graphene with point defects
The phonon density of states (DOS) of graphene with different types of point
defects (carbon isotopes, substitution atoms, vacancies) is considered. Using a
solvable model which is based on the harmonic approximation and the assumption
that the elastic forces act only between nearest neighboring ions we calculate
corrections to graphene DOS dependent on type and concentration of defects. In
particular the correction due to isotopic dimers is determined. It is shown
that a relatively small concentration of defects may lead to significant and
specific changes in the DOS, especially at low frequencies, near the Van Hove
points and in the vicinity of the K-points of the Brillouin zone. In some cases
defects generate one or several narrow gaps near the critical points of the
phonon DOS as well as resonance states in the Brillouin zone regular points.
All types of defects are characterized by the appearance of one or more
additional Van Hove peaks near the (Dirac) K points and their singular
contribution may be comparable with the effect of electron-phonon interaction.
Besides, for low frequencies and near the critical points the relative change
in density of states may be many times higher than the concentration of
defects.Comment: 19 pages, 7 figure
Resonant Raman scattering in cubic and hexagonal boron nitride
We measured first- and second-order Raman scattering in cubic and hexagonal boron nitride using excitation energies in the visible and in the UV. The nonresonant first-order Raman susceptibilities for cubic and hexagonal BN are 1 and 10Å2, respectively. Raman scattering is thus very powerful in detecting the hexagonal phase in mixed thin boron nitride films. In cubic BN the constant Raman sucseptibility in the visible and the UV is due to its indirect band gap. For hexagonal BN a Raman enhancement is found at 5.4eV. It is well explained by the energy dependence of the dielectric function of hexagonal BN. The second-order spectrum of cubic boron nitride is in excellent agreement with first-principles calculations of the phonon density of states. In hexagonal BN the overbending of the LO phonon is ˜100cm-1, five times larger than in graphite
Modeling lactic fermentation of gowé using Lactobacillus starter culture
A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso's primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μmax values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum, respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis, with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter. (Résumé d'auteur
Cooling Tests of the NectarCAM camera for the Cherenkov Telescope Array
The NectarCAM is a camera proposed for the medium-sized telescopes in the
framework of the Cherenkov Telescope Array (CTA), the next-generation
observatory for very-high-energy gamma-ray astronomy. The cameras are designed
to operate in an open environment and their mechanics must provide protection
for all their components under the conditions defined for the CTA observatory.
In order to operate in a stable environment and ensure the best physics
performance, each NectarCAM will be enclosed in a slightly overpressurized,
nearly air-tight, camera body, to prevent dust and water from entering. The
total power dissipation will be ~7.7 kW for a 1855-pixel camera. The largest
fraction is dissipated by the readout electronics in the modules. We present
the design and implementation of the cooling system together with the test
bench results obtained on the NectarCAM thermal demonstrator.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Imaging the symmetry breaking of molecular orbitals in carbon nanotubes
Carbon nanotubes have attracted considerable interest for their unique
electronic properties. They are fascinating candidates for fundamental studies
of one dimensional materials as well as for future molecular electronics
applications. The molecular orbitals of nanotubes are of particular importance
as they govern the transport properties and the chemical reactivity of the
system. Here we show for the first time a complete experimental investigation
of molecular orbitals of single wall carbon nanotubes using atomically resolved
scanning tunneling spectroscopy. Local conductance measurements show
spectacular carbon-carbon bond asymmetry at the Van Hove singularities for both
semiconducting and metallic tubes, demonstrating the symmetry breaking of
molecular orbitals in nanotubes. Whatever the tube, only two types of
complementary orbitals are alternatively observed. An analytical tight-binding
model describing the interference patterns of ? orbitals confirmed by ab initio
calculations, perfectly reproduces the experimental results
The Goldberger-Treiman Discrepancy
The Golberger- Treiman discrepancy is related to the asymptotic behaviour of
the pionic form factor of the nucleon obtained from baryonic QCD sum rules. The
result is .015<=Delta_{GT}<=.022Comment: References updated and minor correction
- …