20,787 research outputs found

    Quasi-Langmuir-Blodgett Thin Film Deposition of Carbon Nanotubes

    Get PDF
    The handling and manipulation of carbon nanotubes continues to be a challenge to those interested in the application potential of these promising materials. To this end, we have developed a method to deposit pure nanotube films over large flat areas on substrates of arbitrary composition. The method bears some resemblance to the Langmuir-Blodgett deposition method used to lay down thin organic layers. We show that this redeposition technique causes no major changes in the films' microstructure and that they retain the electronic properties of as-deposited film laid down on an alumina membrane.Comment: 3 pages, 3 figures, submitted Journal of Applied Physic

    Peaks and Troughs in Helioseismology: The Power Spectrum of Solar Oscillations

    Get PDF
    I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.Comment: 18 pages + 8 separate figures. To appear in Ap

    Resource costs for fault-tolerant linear optical quantum computing

    Full text link
    Linear optical quantum computing (LOQC) seems attractively simple: information is borne entirely by light and processed by components such as beam splitters, phase shifters and detectors. However this very simplicity leads to limitations, such as the lack of deterministic entangling operations, which are compensated for by using substantial hardware overheads. Here we quantify the resource costs for full scale LOQC by proposing a specific protocol based on the surface code. With the caveat that our protocol can be further optimised, we report that the required number of physical components is at least five orders of magnitude greater than in comparable matter-based systems. Moreover the resource requirements grow higher if the per-component photon loss rate is worse than one in a thousand, or the per-component noise rate is worse than 10−510^{-5}. We identify the performance of switches in the network as the single most influential factor influencing resource scaling

    Polynomial Interpretation of Multipole Vectors

    Full text link
    Copi, Huterer, Starkman and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year WMAP quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article the language of polynomials provides a new and independent derivation of the multipole vector concept. Bezout's Theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples, and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently re-confirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.Comment: Version 1: 6 pages. Version 2: added uniqueness proof to Corollary 2; added proper citation (to Starkman et al.) for Open Question; other minor improvement

    Permutation-invariant distance between atomic configurations

    Full text link
    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e. fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the Root Mean Square Distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e. their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity

    Strong lensing by fermionic dark matter in galaxies

    Full text link
    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos and predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 5050 keV ≲mc2≲345\lesssim m c^2 \lesssim 345 keV, can be an alternative interpretation of the central compact object in Sgr A*. We present in this work the gravitational lensing properties of this novel DM model in Milky Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the Non-Singular Isothermal Sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, mc2≈102m c^2\approx 10^{2} keV, we draw the following conclusions. At distances r≳20r\gtrsim 20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. We show that at distances ∼10−4\sim 10^{-4} pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r≲10−6r\lesssim 10^{-6} pc; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used. We find that quantum DM cores do not show a photon sphere what implies that they do not cast a shadow. Similar conclusions apply to the other DM distributions for other fermion masses in the above specified range and for other galaxy types.Comment: 10 pages, 8 figures. v2: Version published in PR

    On the classification and properties of noncommutative duplicates

    Full text link
    We give an explicit description of the set of all factorization structures, or twisting maps, existing between the algebras k^2 and k^2, and classify the resulting algebras up to isomorphism. In the process we relate several different approaches formerly taken to deal with this problem, filling a gap that appeared in a recent paper by Cibils. We also provide a counterexample to a result concerning the Hochschild (co)homology appeared in a paper by J.A. Guccione and J.J. Guccione.Comment: 11 pages, no figure

    Onsager-Manning-Oosawa condensation phenomenon and the effect of salt

    Full text link
    Making use of results pertaining to Painleve III type equations, we revisit the celebrated Onsager-Manning-Oosawa condensation phenomenon for charged stiff linear polymers, in the mean-field approximation with salt. We obtain analytically the associated critical line charge density, and show that it is severely affected by finite salt effects, whereas previous results focused on the no salt limit. In addition, we obtain explicit expressions for the condensate thickness and the electric potential. The case of asymmetric electrolytes is also briefly addressed.Comment: to appear in Phys. Rev. Let

    Can a Reasonable Doubt Have an Unreasonable Price? Limitations on Attorneys\u27 Fee in Criminal Cases

    Get PDF
    The disciplinary rules of every state prohibit attorneys from charging unreasonable fees. These provisions, however; are virtually never enforced; virtually all instances where the rules are invoked involve independent forms of dishonesty or misconduct. The only two cases in which attorneys have been disciplined solely based on the size of the fee involved blue-chip civil attorneys who represented working-class defendants in criminal matters. In both cases, the rationale for discipline was questionable; the clients were completely exonerated of criminal charges and the fees would have been unexceptional in elite civil practice. These disciplinary prosecutions were particularly doubtful because the Sixth Amendment right to counsel of choice prohibits the government from limiting the amount of money criminal defendants can pay their lawyers. The reasonable fee rules are either unenforced or questionably enforced because they are not designed to limit lawyer\u27s fees or incomes per se, but to ensure that lawyers do not take advantage of clients, and that clients understand the nature of the legal services they are buying. The mismatch between the purpose of the rules and their language should be remedied by making clear that lawyers are obligated to talk with their clients about their legal options and offer some estimate of what they might cost. But fees negotiated after appropriate disclosure should not subject an attorney to discipline
    • …
    corecore