2,327 research outputs found

    h→Zγh \rightarrow Z \gamma in the complex two Higgs doublet model

    Full text link
    The latest LHC data confirmed the existence of a Higgs-like particle and made interesting measurements on its decays into γγ\gamma \gamma, ZZ∗Z Z^\ast, WW∗W W^\ast, τ+τ−\tau^+ \tau^-, and bbˉb \bar{b}. It is expected that a decay into ZγZ \gamma might be measured at the next LHC round, for which there already exists an upper bound. The Higgs-like particle could be a mixture of scalar with a relatively large component of pseudoscalar. We compute the decay of such a mixed state into ZγZ \gamma, and we study its properties in the context of the complex two Higgs doublet model, analysing the effect of the current measurements on the four versions of this model. We show that a measurement of the h→Zγh \rightarrow Z \gamma rate at a level consistent with the SM can be used to place interesting constraints on the pseudoscalar component. We also comment on the issue of a wrong sign Yukawa coupling for the bottom in Type II models.Comment: 31 pages, 15 figure

    A reappraisal of the wrong-sign hbb‾hb\overline{b} coupling and the study of h→Zγh \rightarrow Z \gamma

    Full text link
    It has been pointed out recently that current experiments still allow for a two Higgs doublet model where the hbbˉh b \bar{b} coupling (kDmb/vk_D m_b/v) is negative; a sign opposite to that of the Standard Model. Due to the importance of delayed decoupling in the hH+H−h H^+ H^- coupling, h→γγh \rightarrow \gamma \gamma improved measurements will have a strong impact on this issue. For the same reason, measurements or even bounds on h→Zγh \rightarrow Z \gamma are potentially interesting. In this article, we revisit this problem, highlighting the crucial importance of h→VVh \rightarrow VV, which can be understood with simple arguments. We show that the impacts on kD<0k_D<0 models of both h→bbˉh \rightarrow b \bar{b} and h→τ+τ−h \rightarrow \tau^+ \tau^- are very sensitive to input values for the gluon fusion production mechanism; in contrast, h→γγh \rightarrow \gamma \gamma and h→Zγh \rightarrow Z \gamma are not. We also inquire if the search for h→Zγh \rightarrow Z \gamma and its interplay with h→γγh \rightarrow \gamma \gamma will impact the sign of the hbbˉh b \bar{b} coupling. Finally, we study these issues in the context of the Flipped two Higgs doublet model.Comment: 13 pages, pdf figure

    Non-Equilibrium Modeling of the Fe XVII 3C/3D ratio for an Intense X-ray Free Electron Laser

    Full text link
    We present a review of two methods used to model recent LCLS experimental results for the 3C/3D line intensity ratio of Fe XVII (Bernitt et al. 2012), the time-dependent collisional-radiative method and the density-matrix approach. These are described and applied to a two-level atomic system excited by an X-ray free electron laser. A range of pulse parameters is explored and the effects on the predicted Fe XVII 3C and 3D line intensity ratio are calculated. In order to investigate the behavior of the predicted line intensity ratio, a particular pair of A-values for the 3C and 3D transitions was chosen (2.22 ×\times 1013^{13} s−1^{-1} and 6.02 ×\times 1012^{12} s−1^{-1} for the 3C and 3D, respectively), but our conclusions are independent of the precise values. We also reaffirm the conclusions from Oreshkina et al.(2014, 2015): the non-linear effects in the density matrix are important and the reduction in the Fe XVII 3C/3D line intensity ratio is sensitive to the laser pulse parameters, namely pulse duration, pulse intensity, and laser bandwidth. It is also shown that for both models the lowering of the 3C/3D line intensity ratio below the expected time-independent oscillator strength ratio has a significant contribution due to the emission from the plasma after the laser pulse has left the plasma volume. Laser intensities above ∼1×1012\sim 1\times 10^{12} W/cm2^{2} are required for a reduction in the 3C/3D line intensity ratio below the expected time independent oscillator strength ratio

    A line-binned treatment of opacities for the spectra and light curves from neutron star mergers

    Full text link
    The electromagnetic observations of GW170817 were able to dramatically increase our understanding of neutron star mergers beyond what we learned from gravitational waves alone. These observations provided insight on all aspects of the merger from the nature of the gamma-ray burst to the characteristics of the ejected material. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called kilonovae or macronovae. Characteristics of the ejecta include large velocity gradients, relative to supernovae, and the presence of heavy rr-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. For example, these opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we investigate the use of fine-structure, line-binned opacities that preserve the integral of the opacity over frequency. Advantages of this area-preserving approach over the traditional expansion-opacity formalism include the ability to pre-calculate opacity tables that are independent of the type of hydrodynamic expansion and that eliminate the computational expense of calculating opacities within radiation-transport simulations. Tabular opacities are generated for all 14 lanthanides as well as a representative actinide element, uranium. We demonstrate that spectral simulations produced with the line-binned opacities agree well with results produced with the more accurate continuous Monte Carlo Sobolev approach, as well as with the commonly used expansion-opacity formalism. Additional investigations illustrate the convergence of opacity with respect to the number of included lines, and elucidate sensitivities to different atomic physics approximations, such as fully and semi-relativistic approaches.Comment: 27 pages, 22 figures. arXiv admin note: text overlap with arXiv:1702.0299

    Evidence for engraftment of human bone marrow cells in non-lethally irradiated baboons

    Get PDF
    Background. Prior to organ harvesting, an attempt was made to modulate the donor's immune responses against prospective xenogeneic recipients by infusion of 'recipient-type' bone marrow. Methods. For this purpose, baboons conditioned with total lymphoid irradiation were given 6x108 unmodified human bone marrow cells/kg body weight with no subsequent treatment. Results. Animals survived until they were euthanized at 18 months. Using primers specific for human chorionic gonadotrophin gene, the presence of human DNA was confirmed by polymerase chain reaction in the blood of one animal for up to 18 months after cell transplantation; in the other animal, xenogeneic chimerism became undetectable in the blood at 6 months after bone marrow infusion. However, tissue samples obtained from both animals at the time they were euthanized bad evidence of donor (human) DNA. Additionally, the presence of donor DNA in individually harvested colonies of erythroid and myeloid lineages suggested that infused human bone marrow cells had engrafted across the xenogeneic barrier in both baboons. Conclusions. Bone marrow transplantation from human to baboon leads to establishment of chimerism and modulation of donor-specific immune reactivity, which suggests that this strategy could be reproducibly employed to crease 'surrogate' tolerogenesis in prospective donors for subsequent organ transplantation across xenogeneic barriers

    Model Atmospheres for X-ray Bursting Neutron Stars

    Full text link
    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.Comment: 25 pages, 14 figure
    • …
    corecore