35,479 research outputs found

    Integrable dispersionless KdV hierarchy with sources

    Full text link
    An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated. Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is obtained via hodograph transformation. Furthermore, the dispersionless Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge

    B\"{a}cklund transformations for the constrained dispersionless hierarchies and dispersionless hierarchies with self-consistent sources

    Full text link
    The B\"{a}cklund transformations between the constrained dispersionless KP hierarchy (cdKPH) and the constrained dispersionless mKP hieararchy (cdmKPH) and between the dispersionless KP hieararchy with self-consistent sources (dKPHSCS) and the dispersionless mKP hieararchy with self-consistent sources (dmKPHSCS) are constructed. The auto-B\"{a}cklund transformations for the cdmKPH and for the dmKPHSCS are also formulated.Comment: 11 page

    Negaton and Positon solutions of the soliton equation with self-consistent sources

    Full text link
    The KdV equation with self-consistent sources (KdVES) is used as a model to illustrate the method. A generalized binary Darboux transformation (GBDT) with an arbitrary time-dependent function for the KdVES as well as the formula for NN-times repeated GBDT are presented. This GBDT provides non-auto-B\"{a}cklund transformation between two KdV equations with different degrees of sources and enable us to construct more general solutions with NN arbitrary tt-dependent functions. By taking the special tt-function, we obtain multisoliton, multipositon, multinegaton, multisoliton-positon, multinegaton-positon and multisoliton-negaton solutions of KdVES. Some properties of these solutions are discussed.Comment: 13 pages, Latex, no figues, to be published in J. Phys. A: Math. Ge

    Possible Molecular Structure of the Newly Observed Y(4260)

    Full text link
    We suggest that the newly observed resonance Y(4260) is a χcρ0\chi_{c}-\rho^0 molecule, which is an isovector. In this picture, we can easily interpret why Y(4260)π+πJ/ψY(4260)\to \pi^+\pi^-J/\psi has a larger rate than Y(4260)DDˉY(4260)\to D\bar D which has not been observed, and we also predict existence of the other two components of the isotriplet and another two possible partner states which may be observed in the future experiments. A direct consequence of this structure is that for this molecular structure Y(4260)π+πJ/ψY(4260)\to \pi^+\pi^-J/\psi mode is more favorable than Y(4260)KKˉJ/ψY(4260)\to K\bar KJ/\psi which may have a larger fraction if other proposed structures prevail.Comment: 5 pages, 2 figures. Some descriptions changed, more references added and typos corrected. Published version in PR

    Deriving N-soliton solutions via constrained flows

    Full text link
    The soliton equations can be factorized by two commuting x- and t-constrained flows. We propose a method to derive N-soliton solutions of soliton equations directly from the x- and t-constrained flows.Comment: 8 pages, AmsTex, no figures, to be published in Journal of Physics

    On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    Full text link
    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct represenation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.Comment: 25 pages, 6 figure

    Classical Poisson structures and r-matrices from constrained flows

    Full text link
    We construct the classical Poisson structure and rr-matrix for some finite dimensional integrable Hamiltonian systems obtained by constraining the flows of soliton equations in a certain way. This approach allows one to produce new kinds of classical, dynamical Yang-Baxter structures. To illustrate the method we present the rr-matrices associated with the constrained flows of the Kaup-Newell, KdV, AKNS, WKI and TG hierarchies, all generated by a 2-dimensional eigenvalue problem. Some of the obtained rr-matrices depend only on the spectral parameters, but others depend also on the dynamical variables. For consistency they have to obey a classical Yang-Baxter-type equation, possibly with dynamical extra terms.Comment: 16 pages in LaTe

    Constructing N-soliton solution for the mKdV equation through constrained flows

    Full text link
    Based on the factorization of soliton equations into two commuting integrable x- and t-constrained flows, we derive N-soliton solutions for mKdV equation via its x- and t-constrained flows. It shows that soliton solution for soliton equations can be constructed directly from the constrained flows.Comment: 10 pages, Latex, to be published in "J. Phys. A: Math. Gen.

    On the Toda Lattice Equation with Self-Consistent Sources

    Full text link
    The Toda lattice hierarchy with self-consistent sources and their Lax representation are derived. We construct a forward Darboux transformation (FDT) with arbitrary functions of time and a generalized forward Darboux transformation (GFDT) for Toda lattice with self-consistent sources (TLSCS), which can serve as a non-auto-Backlund transformation between TLSCS with different degrees of sources. With the help of such DT, we can construct many type of solutions to TLSCS, such as rational solution, solitons, positons, negetons, and soliton-positons, soliton-negatons, positon-negatons etc., and study properties and interactions of these solutions.Comment: 20 page

    Cryptanalysis of an MPEG-Video Encryption Scheme Based on Secret Huffman Tables

    Get PDF
    This paper studies the security of a recently-proposed MPEG-video encryption scheme based on secret Huffman tables. Our cryptanalysis shows that: 1) the key space of the encryption scheme is not sufficiently large against divide-and-conquer (DAC) attack and known-plaintext attack; 2) it is possible to decrypt a cipher-video with a partially-known key, thus dramatically reducing the complexity of the DAC brute-force attack in some cases; 3) its security against the chosen-plaintext attack is very weak. Some experimental results are included to support the cryptanalytic results with a brief discuss on how to improve this MPEG-video encryption scheme.Comment: 8 pages, 4 figure
    corecore