32,385 research outputs found

    Large anisotropy in the optical conductivity of YNi2B2C

    Full text link
    The optical properties of YNi2_2B2_2C are studied by using the first-principles full-potential linearized augmented plane wave (FLAPW) method within the local density approximation. Anisotropic behavior is obtained in the optical conductivity, even though the electronic structure shows 3D character. A large peak in σz\sigma_z is obtained at 2.4 eV. The anisotropic optical properties are analyzed in terms of interband transitions between energy levels and found that the Ni site plays an important role. The electronic energy loss spectroscopy (EELS) spectra are also calculated to help elucidate the anisotropic properties in this system.Comment: revtex4, 4 pages, 5 figures, to appear in PR

    Ultralow-threshold erbium-implanted toroidal microlaser on silicon

    Get PDF
    We present an erbium-doped microlaser on silicon operating at a wavelength of 1.5 mum that operates at a launched pump threshold as low as 4.5 muW. The 40 mum diameter toroidal microresonator is made using a combination of erbium ion implantation, photolithography, wet and dry etching, and laser annealing, using a thermally grown SiO2 film on a Si substrate as a starting material. The microlaser, doped with an average Er concentration of 2x10^(19) cm(-3), is pumped at 1480 nm using an evanescently coupled tapered optical fiber. Cavity quality factors as high as 3.9x10^(7) are achieved, corresponding to a modal loss of 0.007 dB/cm, and single-mode lasing is observed

    Surface-mode microcavity

    Full text link
    Optical microcavities based on zero-group-velocity surface modes in photonic crystal slabs are studied. It is shown that high quality factors can be easily obtained for such microcavities in photonic crystal slabs. With increasing of the cavity length, the quality factor is gradually enhanced and the resonant frequency converges to that of the zero-group-velocity surface mode in the photonic crystal. The number of the resonant modes with high quality factors is mainly determined by the number of surface modes with zero-group velocity.Comment: 11 pages, 4 figure

    The η(2225)\eta(2225) observed by the BES Collaboration

    Full text link
    In the framework of the 3P0^3P_0 meson decay model, the strong decays of the 31S03 ^1S_0 and 41S04 ^1S_0 ssˉs\bar{s} states are investigated. It is found that in the presence of the initial state mass being 2.24 GeV, the total widths of the 31S03 ^1S_0 and 41S04 ^1S_0 ssˉs\bar{s} states are about 438 MeV and 125 MeV, respectively. Also, when the initial state mass varies from 2220 to 2400 MeV, the total width of the 41S04 ^1S_0 ssˉs\bar{s} state varies from about 100 to 132 MeV, while the total width of the 31S03 ^1S_0 ssˉs\bar{s} state varies from about 400 to 594 MeV. A comparison of the predicted widths and the experimental result of (0.19±0.030.06+0.04)(0.19\pm 0.03^{+0.04}_{-0.06}) GeV, the width of the η(2225)\eta(2225) with a mass of (2.240.020.02+0.03+0.03)(2.24^{+0.03+0.03}_{-0.02-0.02}) GeV recently observed by the BES Collaboration in the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi\to\gamma\phi\phi\to\gamma K^+K^-K^0_SK^0_L, suggests that it would be very difficult to identify the η(2225)\eta(2225) as the 31S03 ^1S_0 ssˉs\bar{s} state, and the η(2225)\eta(2225) seams a good candidate for the 41S04 ^1S_0 ssˉs\bar{s} state.Comment: 14 pages, 3 figures, typos corrected, Accepted by Physical Review

    SUSY Dark Matter In Light Of CDMS/XENON Limits

    Full text link
    In this talk we briefly review the current CDMS/XENON constraints on the neutralino dark matter in three popular supersymmetric models: the minimal (MSSM), the next-to-minimal (NMSSM) and the nearly minimal (nMSSM). The constraints from the dark matter relic density and various collider experiments are also taken into account. The conclusion is that for each model the current CDMS/XENON limits can readily exclude a large part of the parameter space allowed by other constraints and the future SuperCDMS or XENON100 can cover most of the allowed parameter space. The implication for the Higgs search at the LHC is also discussed. It is found that in the currently allowed parameter space the MSSM charged Higgs boson is quite unlikely to be discovered at the LHC while the neutral Higgs bosons HH and AA may be accessible at the LHC in the parameter space with a large μ\mu parameter.Comment: talk given at 2nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry, Nov 5-6, 2010, Hsinchu, Taiwan (to appear in Int. J. Mod. Phys. D

    Squeezed-state generation in optical bistability

    Get PDF
    Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting

    Vortices in U(1) Noncommutative Gauge Fields

    Get PDF
    Charged vortex solutions for noncommutative Maxwell-Higgs model in 3+1 dimensions are found. We show that the stability of these vortex solutions is spoiled out for some, large enough, noncommutativity parameter. A non topological charge, however, is induced by noncommutative effects.Comment: references added, slight modifications in the introduction and conclusions. To be published in PR

    Long-time self-similar asymptotic of the macroscopic quantum models

    Full text link
    The unipolar and bipolar macroscopic quantum models derived recently for instance in the area of charge transport are considered in spatial one-dimensional whole space in the present paper. These models consist of nonlinear fourth-order parabolic equation for unipolar case or coupled nonlinear fourth-order parabolic system for bipolar case. We show for the first time the self-similarity property of the macroscopic quantum models in large time. Namely, we show that there exists a unique global strong solution with strictly positive density to the initial value problem of the macroscopic quantum models which tends to a self-similar wave (which is not the exact solution of the models) in large time at an algebraic time-decay rate.Comment: 18 page

    Search for charginos, neutralinos, and gravitinos at LEP

    Get PDF
    The hep-ex data base was decided not to be an appropriate place to make DELPHI notes public. Sorry for the inconvenience.Comment: the paper should not have been made publi
    corecore