37 research outputs found

    Three-dimensional multi-source localization of underwater objects using convolutional neural networks for artificial lateral lines

    Get PDF
    This research focuses on the signal processing required for a sensory system that can simultaneously localize multiple moving underwater objects in a three-dimensional (3D) volume by simulating the hydrodynamic flow caused by these objects. We propose a method for localization in a simulated setting based on an established hydrodynamic theory founded in fish lateral line organ research. Fish neurally concatenate the information of multiple sensors to localize sources. Similarly, we use the sampled fluid velocity via two parallel lateral lines to perform source localization in three dimensions in two steps. Using a convolutional neural network, we first estimate a two-dimensional image of the probability of a present source. Then we determine the position of each source, via an automated iterative 3D-aware algorithm. We study various neural network architectural designs and different ways of presenting the input to the neural network; multi-level amplified inputs and merged convolutional streams are shown to improve the imaging performance. Results show that the combined system can exhibit adequate 3D localization of multiple sources

    Як уникнути підйому рівня води?

    Get PDF
    East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales

    Effects of co-habitation between Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages on life history traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effective measures for the control of malaria and filariasis vectors can be achieved by targeting immature stages of anopheline and culicine mosquitoes in productive habitat. To design this strategy, the mechanisms (like biotic interactions with conspecifc and heterospecific larvae) regulating mosquito aquatic stages survivorship, development time and the size of emerging adults should be understood. This study explored the effect of co-habitation between <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>on different life history traits of both species under different densities and constant food supply in the habitats of the same size under semi-natural conditions.</p> <p>Methods</p> <p>Experiments were set up with three combinations; <it>Cx. quinquefasciatus </it>alone (single species treatment), <it>An. gambiae </it>s.s. alone (single species treatment); and <it>An. gambiae </it>s.s. with <it>Cx. quiquefasciatus </it>(co-habitation treatment) in different densities in semi field situation.</p> <p>Results</p> <p>The effect of co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>was found to principally affect three parameters. The wing-lengths (a proxy measure of body size) of <it>An. gambiae </it>s.s. in co-habitation treatments were significantly shorter in both females and males than in <it>An. gambiae </it>s.s single species treatments. In <it>Cx. quinquefasciatus</it>, no significant differences in wing-length were observed between the single species and co-habitation treatments. Daily survival rates were not significantly different between co-habitation and single species treatments for both <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus</it>. Developmental time was found to be significantly different with single species treatments developing better than co-habitation treatments. Sex ratio was found to be significantly different from the proportion of 0.5 among single and co-habitation treatments species at different densities. Single species treatments had more males than females emerging while in co-habitation treatments more females emerged than males. In this study, there was no significant competitive survival advantage in co-habitation.</p> <p>Conclusion</p> <p>These results suggest that co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>in semi-natural conditions affect mostly <it>An. gambiae </it>s.s. body size. Hence, more has to be understood on the effects of co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>in a natural ecology and its possible consequences in malaria and filariasis epidemiology.</p

    Time lags in metapopulation responses to landscape changes

    Get PDF
    Landscape ecologists and conservation biologists usually assume a causal relation between the observed current landscape pattern and the species distribution pattern. This assumption may not always be correct because species distribution patterns can reflect past as well as present landscape conditions
    corecore