364 research outputs found
How well can people observe the flow state of temporary streams?
Even though more than half of the global river network does not have continuous flow, temporary (i.e., non-perennial) streams are poorly represented in traditional monitoring networks. Therefore, new approaches are needed to monitor these streams. Citizen science provides an interesting opportunity as people, equipped with smartphones, can observe the flow state of temporary streams. Such observations can go beyond a simple classification of flow vs. no flow and include ecologically important states, such as standing water, isolated pools, or wet streambeds. However, the quality of citizen science data for temporary streams has so far not been thoroughly assessed. Therefore, we asked more than 1,200 people during 23 field days to visually determine the flow state of eight temporary streams based on six classes ranging from a dry streambed to flowing water. Participants could most clearly distinguish a flowing stream from a non-flowing stream. The overall agreement between participants was 66%; 83% of the selected flow states were within one class of the most frequently selected flow state. The agreement with the expert was lower (56% chose the same class, and 79% chose a state within one class). Inconsistencies between the selected flow state and answers to specific yes-no statements about the temporary stream were largest for the dry streambed and damp/wet streambed states. These discrepancies were partly caused by participants looking at different parts of the stream (i.e., participants considered the flow state for a location further upstream or downstream). To ensure that all participants determine the flow state comparably, we recommend clear definitions of the flow state classes, detailed information on the exact location for which the flow state needs to be determined, as well as more training
Analytical solution of compression, free swelling and electrical loading of saturated charged porous media
Analytical solutions are derived for one-dimensional consolidation, free swelling and electrical loading of a saturated charged porous medium. The governing equations describe infinitesimal deformations of linear elastic isotropic charged porous media saturated with a mono-valent ionic solution. From the governing equations a coupled diffusion equation in state space notation is derived for the electro-chemical potentials, which is decoupled introducing a set of normal parameters, being a linear combination of the eigenvectors of the diffusivity matrix. The magnitude of the eigenvalues of the diffusivity matrix correspond to the time scales for Darcy flow, diffusion of ionic constituents and diffusion of electrical potential
Self-guided smartphone excursions in university teaching—experiences from exploring “Water in the City”
Like many other university teachers, we were faced with an unprecedented situation in spring 2020, when we had to cancel on-site teaching and excursions due to the Covid-19 pandemic. However, we were in the fortunate position that we had already started to develop a smartphone-based self-guided excursion on the topic of “Water in the City”. We accelerated this development and used it to replace the traditional group excursion in our Bachelor level introductory course in Hydrology and Climatology. The excursion of this course is visited by around 150 students each year. Because the student feedback was overall very positive, we used the self-guided excursion again in 2021 and plan to continue to use it in the coming years. In this paper, we describe the excursion, discuss the experiences of the students and ourselves, and present recommendations and ideas that could be useful for similar excursions at other universities
Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity
Nonlinear relations between rain input and hillslope outflow are common observations in hillslope hydrology field studies. In this paper we use percolation theory to model the threshold relationship between rainfall amount and outflow and show that this nonlinear relationship may arise from simple linear processes at the smaller scale. When the rainfall amount exceeds a threshold value, the underlying elements become connected and water flows out of the base of the hillslope. The percolation approach shows how random variations in storage capacity and connectivity at the small spatial scale cause a threshold relationship between rainstorm amount and hillslope outflow. <br><br> As a test case, we applied percolation theory to the well characterized experimental hillslope at the Panola Mountain Research Watershed. Analysing the measured rainstorm events and the subsurface stormflow with percolation theory, we could determine the effect of bedrock permeability, spatial distribution of soil properties and initial water content within the hillslope. The measured variation in the relationship between rainstorm amount and subsurface flow could be reproduced by modelling the initial moisture deficit, the loss of free water to the bedrock, the limited size of the system and the connectivity that is a function of bedrock topography and existence of macropores. The values of the model parameters were in agreement with measured values of soil depth distribution and water saturation
Instructive Surprises in the Hydrological Functioning of Landscapes
Landscapes receive water from precipitation and then transport, store, mix, and release it, both downward to streams and upward to vegetation. How they do this shapes floods, droughts, biogeochemical cycles, contaminant transport, and the health of terrestrial and aquatic ecosystems. Because many of the key processes occur invisibly in the subsurface, our conceptualization of them has often relied heavily on physical intuition. In recent decades, however, much of this intuition has been overthrown by field observations and emerging measurement methods, particularly involving isotopic tracers. Here we summarize key surprises that have transformed our understanding of hydrological processes at the scale of hillslopes and drainage basins. These surprises have forced a shift in perspective from process conceptualizations that are relatively static, homogeneous, linear, and stationary to ones that are predominantly dynamic, heterogeneous, nonlinear, and nonstationary. ▪ Surprising observations and novel measurements are transforming our understanding of the hydrological functioning of landscapes. ▪ Even during storm peaks, streamflow is composed mostly of water that has been stored in the landscape for weeks, months, or years. ▪ Streamflow and tree water uptake often originate from different subsurface storages and from different seasons’ precipitation. ▪ Stream networks dynamically extend and retract as the landscape wets and dries, and many stream reaches lose flow into underlying aquifers
Citizen science approaches for water quality measurements
Citizen science has become a widely used approach in water quality studies. Although there are literature reviews about citizen science and water quality assessments, an overview of the most commonly used methods and their strengths and weaknesses is still lacking. Therefore, we reviewed the scientific literature on citizen science for surface water quality assessments and examined the methods and strategies used by the 72 studies that fulfilled our search criteria. Special attention was given to the parameters monitored, the monitoring tools, and the spatial and temporal resolution of the data collected in these studies. In addition, we discuss the advantages and disadvantages of the different approaches used in water quality assessments and their potential to complement traditional hydrological monitoring and research
Temporal and spatial variation in shallow groundwater gradients in a boreal headwater catchment
In humid climates, shallow groundwater is often assumed to be a subdued replica of the surface topography. Nevertheless, the relation between the surface topography and groundwater table can change over time, especially when catchment wetness changes. To investigate the correlation between the surface topography and the groundwater table, we analyzed groundwater levels and gradients in a boreal headwater catchment using 1.5 years of continuous groundwater level data for 75 wells. As expected, groundwater gradients changed with catchment wetness. Gradient directions calculated over short distances (5 m) changed by up to 360â—¦; gradients calculated over larger distances (20 m) varied by up to 270â—¦. The groundwater gradient directions were generally most variable for flatter locations and locations where the local surface slope differed from the surrounding topography. Smoothed digital elevation models (DEMs) represented the groundwater surface better than highresolution DEMs. The optimal degree of smoothing varied over the year and was lowest for very wet periods, such as the snowmelt period, when groundwater tables were high
Accuracy of crowdsourced streamflow and stream level class estimates
Streamflow data are important for river management and the calibration of hydrological models. However, such data are only available for gauged catchments. Citizen science offers an alternative data source, and can be used to estimate streamflow at ungauged sites. We evaluated the accuracy of crowdsourced streamflow estimates for 10 streams in Switzerland by asking citizens to estimate streamflow either directly, or based on the estimated width, depth and velocity of the stream. Additionally, we asked them to estimate the stream level class by comparing the current stream level with a picture that included a virtual staff gauge. To compare the different estimates, the stream level class estimates were converted into streamflow. The results indicate that stream level classes were estimated more accurately than streamflow, and more accurately represented high and low flow conditions. Based on this result, we suggest that citizen science projects focus on stream level class estimates instead of streamflow estimates
Shallow-groundwater-level time series and a groundwater chemistry survey from a boreal headwater catchment, Krycklan, Sweden
Shallow groundwater can respond quickly to precipitation and is the main contributor to streamflow in most catchments in humid, temperate climates. Therefore, it is important to have high-spatiotemporal-resolution data on groundwater levels and groundwater chemistry to test spatially distributed hydrological models. However, currently, there are few datasets on groundwater levels with a high spatiotemporal resolution because of the large effort required to collect these data. To better understand shallow groundwater dynamics in a boreal headwater catchment, we installed a network of groundwater wells in two areas in the Krycklan catchment in northern Sweden for a small headwater catchment (3.5 ha; 54 wells) and a hillslope (1 ha; 21 wells). The average well depth was 274 cm (range of 70–581 cm). We recorded the groundwater-level variation at 10–30 min intervals between 18 July 2018–1 November 2020. Manual water-level measurements (0–26 per well) during the summers of 2018 and 2019 were used to confirm and re-calibrate the automatic water-level measurements. The groundwater-level data for each well was carefully processed using six data quality labels. The absolute and relative positions of the wells were measured with a high-precision GPS and terrestrial laser scanner to determine differences in absolute groundwater levels and calculate groundwater gradients. During the summer of 2019, all wells with sufficient water were sampled once and analyzed for electrical conductivity, pH, absorbance, and anion and cation concentrations, as well as the stable isotopes of hydrogen and oxygen. The data are available at https://doi.org/10.5880/fidgeo.2022.020 (Erdbrügger et al., 2022). This combined hydrometric and hydrochemical dataset can be useful for testing models that simulate groundwater dynamics and evaluating metrics that describe subsurface hydrological connectivity
- …