483 research outputs found

    Accelerating Scientific Discovery by Formulating Grand Scientific Challenges

    Get PDF
    One important question for science and society is how to best promote scientific progress. Inspired by the great success of Hilbert's famous set of problems, the FuturICT project tries to stimulate and focus the efforts of many scientists by formulating Grand Challenges, i.e. a set of fundamental, relevant and hardly solvable scientific questions.Comment: To appear in EPJ Special Topics. For related work see http://www.futurict.eu and http://www.soms.ethz.c

    Streaming the Web: Reasoning over dynamic data.

    Get PDF
    In the last few years a new research area, called stream reasoning, emerged to bridge the gap between reasoning and stream processing. While current reasoning approaches are designed to work on mainly static data, the Web is, on the other hand, extremely dynamic: information is frequently changed and updated, and new data is continuously generated from a huge number of sources, often at high rate. In other words, fresh information is constantly made available in the form of streams of new data and updates. Despite some promising investigations in the area, stream reasoning is still in its infancy, both from the perspective of models and theories development, and from the perspective of systems and tools design and implementation. The aim of this paper is threefold: (i) we identify the requirements coming from different application scenarios, and we isolate the problems they pose; (ii) we survey existing approaches and proposals in the area of stream reasoning, highlighting their strengths and limitations; (iii) we draw a research agenda to guide the future research and development of stream reasoning. In doing so, we also analyze related research fields to extract algorithms, models, techniques, and solutions that could be useful in the area of stream reasoning. © 2014 Elsevier B.V. All rights reserved

    Hybrid reasoning on OWL RL

    Get PDF

    DynamiTE: Parallel Materialization of Dynamic RDF Data

    Get PDF
    One of the main advantages of using semantically annotated data is that machines can reason on it, deriving implicit knowledge from explicit information. In this context, materializing every possible implicit derivation from a given input can be computationally expensive, especially when considering large data volumes. Most of the solutions that address this problem rely on the assumption that the information is static, i.e., that it does not change, or changes very infrequently. However, the Web is extremely dynamic: online newspapers, blogs, social networks, etc., are frequently changed so that outdated information is removed and replaced with fresh data. This demands for a materialization that is not only scalable, but also reactive to changes. In this paper, we consider the problem of incremental materialization, that is, how to update the materialized derivations when new data is added or removed. To this purpose, we consider the ρdf RDFS fragment [12], and present a parallel system that implements a number of algorithms to quickly recalculate the derivation. In case new data is added, our system uses a parallel version of the well-known semi-naive evaluation of Datalog. In case of removals, we have implemented two algorithms, one based on previous theoretical work, and another one that is more efficient since it does not require a complete scan of the input. We have evaluated the performance using a prototype system called DynamiTE, which organizes the knowledge bases with a number of indices to facilitate the query process and exploits parallelism to improve the performance. The results show that our methods are indeed capable to recalculate the derivation in a short time, opening the door to reasoning on much more dynamic data than is currently possible. © 2013 Springer-Verlag
    corecore