66 research outputs found
Terminology - glossary including acronyms and quotations in use for the conservative spinal deformities treatment: 8th SOSORT consensus paper
<p>Abstract</p> <p>Background</p> <p>This report is the SOSORT Consensus Paper on Terminology for use in the treatment of conservative spinal deformities. Figures are provided and relevant literature is cited where appropriate.</p> <p>Methods</p> <p>The Delphi method was used to reach a preliminary consensus before the meeting, where the terms that still needed further clarification were discussed.</p> <p>Results</p> <p>A final agreement was found for all the terms, which now constitute the base of this glossary. New terms will be added after being discussed and accepted.</p> <p>Discussion</p> <p>When only one set of terms is used for communication in a place or among a group of people, then everyone can clearly and efficiently communicate. This principle applies for any professional group. Until now, no common set of terms was available in the field of the conservative treatment of scoliosis and spinal deformities. This glossary gives a common base language to draw from to discuss data, findings and treatment.</p
A specific scoliosis classification correlating with brace treatment: description and reliability
<p>Abstract</p> <p>Background</p> <p>Spinal classification systems for scoliosis which were developed to correlate with surgical treatment historically have been used in brace treatment as well. Previously, there had not been a scoliosis classification system developed specifically to correlate with brace design and treatment. The purpose of this study is to show the intra- and inter- observer reliability of a new scoliosis classification system correlating with brace treatment.</p> <p>Methods</p> <p>An original classification system ("Rigo Classification") was developed in order to define specific principles of correction required for efficacious brace design and fabrication. The classification includes radiological as well as clinical criteria. The radiological criteria are utilized to differentiate five basic types of curvatures including: (I) imbalanced thoracic (or three curves pattern), (II) true double (or four curve pattern), (III) balanced thoracic and false double (non 3 non 4), (IV) single lumbar and (V) single thoracolumbar. In addition to the radiological criteria, the Rigo Classification incorporates the curve pattern according to SRS terminology, the balance/imbalance at the transitional point, and L4-5 counter-tilting. To test the intra-and inter-observer reliability of the Rigo Classification, three observers (1 MD, 1 PT and 1 CPO) measured (and one of them, the MD, re-measured) 51 AP radiographs including all curvature types.</p> <p>Results</p> <p>The intra-observer Kappa value was 0.87 (acceptance >0.70). The inter-observer Kappa values fluctuated from 0.61 to 0.81 with an average of 0.71 (acceptance > 0.70).</p> <p>Conclusions</p> <p>A specific scoliosis classification which correlates with brace treatment has been proposed with an acceptable intra-and inter-observer reliability.</p
Brace technology thematic series - The Sforzesco and Sibilla braces, and the SPoRT (Symmetric, Patient oriented, Rigid, Three-dimensional, active) concept
<p>Abstract</p> <p>Background</p> <p>Bracing is an effective strategy for scoliosis treatment, but there is no consensus on the best type of brace, nor on the way in which it should act on the spine to achieve good correction. The aim of this paper is to present the family of SPoRT (Symmetric, Patient-oriented, Rigid, Three-dimensional, active) braces: Sforzesco (the first introduced), Sibilla and Lapadula.</p> <p>Methods</p> <p>The Sforzesco brace was developed following specific principles of correction. Due to its overall symmetry, the brace provides space over pathological depressions and pushes over elevations. Correction is reached through construction of the envelope, pushes, escapes, stops, and drivers. The real novelty is the drivers, introduced for the first time with the Sforzesco brace; they allow to achieve the main action of the brace: a three-dimensional elongation pushing the spine in a down-up direction.</p> <p>Brace prescription is made plane by plane: frontal (on the "slopes", another novelty of this concept, i.e. the laterally flexed sections of the spine), horizontal, and sagittal. The brace is built modelling the trunk shape obtained either by a plaster cast mould or by CAD-CAM construction. Brace checking is essential, since SPoRT braces are adjustable and customisable according to each individual curve pattern.</p> <p>Treatment time and duration is individually tailored (18-23 hours per day until Risser 3, then gradual reduction). SEAS (Scientific Exercises Approach to Scoliosis) exercises are a key factor to achieve success.</p> <p>Results</p> <p>The Sforzesco brace has shown to be more effective than the Lyon brace (matched case/control), equally effective as the Risser plaster cast (prospective cohort with retrospective controls), more effective than the Risser cast + Lyon brace in treating curves over 45 degrees Cobb (prospective cohort), and is able to improve aesthetic appearance (prospective cohort).</p> <p>Conclusions</p> <p>The SPoRT concept of bracing (three-dimensional elongation pushing in a down-up direction) is different from the other corrective systems: 3-point, traction, postural, and movement-based. The Sforzesco brace, being comparable to casting, may be the best brace for the worst cases.</p
Physiotherapy scoliosis-specific exercises: a comprehensive review of seven major schools
In recent decades, there has been a call for change among all stakeholders involved in scoliosis management. Parents of children with scoliosis have complained about the so-called “wait and see” approach that far too many doctors use when evaluating children’s scoliosis curves between 10° and 25°. Observation, Physiotherapy Scoliosis Specific Exercises (PSSE) and bracing for idiopathic scoliosis during growth are all therapeutic interventions accepted by the 2011 International Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT). The standard features of these interventions are: 1) 3-dimension self-correction; 2) Training activities of daily living (ADL); and 3) Stabilization of the corrected posture. PSSE is part of a scoliosis care model that includes scoliosis specific education, scoliosis specific physical therapy exercises, observation or surveillance, psychological support and intervention, bracing and surgery. The model is oriented to the patient. Diagnosis and patient evaluation is essential in this model looking at a patient-oriented decision according to clinical experience, scientific evidence and patient’s preference. Thus, specific exercises are not considered as an alternative to bracing or surgery but as a therapeutic intervention, which can be used alone or in combination with bracing or surgery according to individual indication. In the PSSE model it is recommended that the physical therapist work as part of a multidisciplinary team including the orthopeadic doctor, the orthotist, and the mental health care provider - all are according to the SOSORT guidelines and Scoliosis Research Society (SRS) philosophy. From clinical experiences, PSSE can temporarily stabilize progressive scoliosis curves during the secondary period of progression, more than a year after passing the peak of growth. In non-progressive scoliosis, the regular practice of PSSE could produce a temporary and significant reduction of the Cobb angle. PSSE can also produce benefits in subjects with scoliosis other than reducing the Cobb angle, like improving back asymmetry, based on 3D self-correction and stabilization of a stable 3D corrected posture, as well as the secondary muscle imbalance and related pain. In more severe cases of thoracic scoliosis, it can also improve breathing function. This paper will discuss in detail seven major scoliosis schools and their approaches to PSSE, including their bracing techniques and scientific evidence. The aim of this paper is to understand and learn about the different international treatment methods so that physical therapists can incorporate the best from each into their own practices, and in that way attempt to improve the conservative management of patients with idiopathic scoliosis. These schools are presented in the historical order in which they were developed. They include the Lyon approach from France, the Katharina Schroth Asklepios approach from Germany, the Scientific Exercise Approach to Scoliosis (SEAS) from Italy, the Barcelona Scoliosis Physical Therapy School approach (BSPTS) from Spain, the Dobomed approach from Poland, the Side Shift approach from the United Kingdom, and the Functional Individual Therapy of Scoliosis approach (FITS) from Poland
Introduction to the "Scoliosis" Journal Brace Technology Thematic Series: increasing existing knowledge and promoting future developments
Bracing is the main non-surgical intervention in the treatment of idiopathic scoliosis during growth, in hyperkyphosis (and Scheuermann disease) and occasionally for spondylolisthesis; it can be used in adult scoliosis, in the elderly when pathological curves lead to a forward leaning posture or in adults after traumatic injuries. Bracing can be defined as the application of external corrective forces to the trunk; rigid supports or elastic bands can be used and braces can be custom-made or prefabricated. The state of research in the field of conservative treatment is insufficient and while it can be stated that there is some evidence to support bracing, we must also acknowledge that today we do not have a common and generally accepted knowledge base, and that instead, individual expertise still prevails, giving rise to different schools of thought on brace construction and principles of correction. The only way to improve the knowledge and understanding of brace type and brace function is to establish a single and comprehensive source of information about bracing. This is what the Scoliosis Journal is going to do through the "Brace Technology" Thematic Series, where technical papers coming from the different schools will be published
Don't Fall Off the Adaptation Cliff: When Asymmetrical Fitness Selects for Suboptimal Traits
The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized (“genotype fitness”) instead of the classical fitness function (“phenotype fitness”). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature
Specific exercises performed in the period of brace weaning can avoid loss of correction in Adolescent Idiopathic Scoliosis (AIS) patients: Winner of SOSORT's 2008 Award for Best Clinical Paper
<p>Abstract</p> <p>Background</p> <p>Exercises are frequently performed in order to improve the efficacy of bracing and avoid its collateral effects. Very frequently there is a loss of correction during brace weaning in AIS treatment.</p> <p>Aim</p> <p>To verify the efficacy of exercises in reducing correction loss during brace weaning.</p> <p>Study Design</p> <p>Retrospective controlled study.</p> <p>Population</p> <p>Sixty-eight consecutive patients (eight males), age 15 ± 1 and Cobb angle 22 ± 8° at start of brace weaning.</p> <p>Methods</p> <p>The start of brace weaning was defined as the first visit in which the wearing of brace for less than 18/24 hours was prescribed (according to our protocol, at Risser 3). Patients were divided into two groups according to whether or not exercises were performed: (1) EX (exercises), included 39 patients and was further divided into two sub-groups: SEAS (who performed exercises according to our institute's protocol, 14 patients) and OTH (other exercises, 25 patients) and (2) CON (controls, 29 patients) that was divided into two other sub-groups: DIS (discontinuous exercises, 19 patients) and NO (no exercises, 10 patients). Complete brace weaning was defined as the first visit in which the brace was no longer prescribed (ringapophysis closure or Risser 5, according to our protocol).</p> <p>ANOVA and Chi Square tests were performed.</p> <p>Results</p> <p>There was no difference between groups at baseline. However, at the end of treatment, 2.7 years after the start of the weaning process, Cobb angle increased significantly in both the DIS and NO groups (3.9° and 3.1° Cobb, respectively). The SEAS and OTH groups did not change. Comparing single groups, OTH (with respect to DIS) had a significant difference (P < 0.05).</p> <p>Conclusion</p> <p>Exercises can help reduce the correction loss in brace weaning for AIS.</p
Guidelines on "Standards of management of idiopathic scoliosis with corrective braces in everyday clinics and in clinical research": SOSORT Consensus 2008
<p>Abstract</p> <p>Background</p> <p>Reported failure rates,(defined based on percentage of cases progressing to surgery) of corrective bracing for idiopathic scoliosis are highly variable. This may be due to the quality of the brace itself, but also of the patient care during treatment. The latter is sometimes neglected, even though it is considered a main determinant of good results among conservative experts of SOSORT. The aim of this paper was to develop and verify the Consensus on management of scoliosis patients treated with braces</p> <p>Methods</p> <p>We followed a Delphi process in four steps, distributing and gradually changing according to the results a set of recommendations: we involved the SOSORT Board twice, then all SOSORT members twice, with a Pre-Meeting Questionnaire (PMQ), and during a Consensus Session at the SOSORT Athens Meeting with a Meeting Questionnaire (MQ). We set a 90% agreement as the minimum to be reached.</p> <p>Results</p> <p>We had a 71% response rate to PMQ, and 66.7% to MQ. Since the PMQ we had a good agreement (no answers below 72% – 70.2% over 90%). With the MQ the agreement consistently increased for all the answers previously below 90% (no answers below 83%, 75% over 90%). With increasing experience in bracing all numerical criteria tended to become more strict. We finally produced a set of 14 recommendations, grouped in 6 Domains (Experience/competence, Behaviours, Prescription, Construction, Brace Check, Follow-up).</p> <p>Conclusion</p> <p>The Consensus permits establishment of recommendations concerning the standards of management of idiopathic scoliosis with bracing, with the aim to increase efficacy and compliance to treatment. The SOSORT recommends to professionals engaged in patient care to follow the guidelines of this Consensus in their clinical practice. The SOSORT criteria should also be followed in clinical research studies to achieve a minimum quality of care. If the aim is to verify the efficacy of bracing these criteria should be companions of the methodological research criteria for bracing proposed by other societies.</p
- …