579 research outputs found

    On the contribution of exchange interactions to the Vlasov equation

    Full text link
    Exchange effects play an important role in determining the equilibrium properties of dense matter systems, as well as for magnetic phenomena. There exists an extensive literature concerning, e.g., the effects of exchange interactions on the equation of state of dense matter. Here, a generalization of the Vlasov equation to include exchange effects is presented allowing for electromagnetic mean fields, thus incorporating some of the dynamic effects due to the exchange interactions. Treating the exchange term perturbatively, the correction to classical Langmuir waves in plasmas is found, and the results are compared with previous work. It is noted that the relative importance of exchange effects scales similarly with density and temperature as particle dispersive effects, but that the overall magnitude is sensitive to the details of the specific problem. The implications of our results are discussed.Comment: 9 page

    Nonlinear wave interaction and spin models in the MHD regime

    Full text link
    Here we consider the influence on the electron spin in the MHD regime. Recently developed models which include spin-velocity correlations are taken as a starting point. A theoretical argument is presented, suggesting that in the MHD regime a single fluid electron model with spin correlations is equivalent to a model with spin-up and spin-down electrons constituting different fluids, but where the spin-velocity correlations are omitted. Three wave interaction of 2 shear Alfven waves and a compressional Alfven wave is then taken as a model problem to evaluate the asserted equivalence. The theoretical argument turns out to be supported, as the predictions of the two models agree completely. Furthermore, the three wave coupling coefficients obey the Manley-Rowe relations, which give further support to the soundness of the models and the validity of the assumptions made in the derivation. Finally we point out that the proposed two-fluid model can be incorporated in standard Particle-In-Cell schemes with only minor modifications.Comment: 8 page

    Regularizing velocity differences in time-lapse FWI using gradient mismatch information

    Get PDF
    We present a method for recovering time-lapse velocity changes using full waveform inversion (FWI). In a preprocessing step we invert for a single intermediate model by simultaneously minimizing the data misfit in the baseline and the monitor surveys. We record the individual FWI gradients corresponding to the baseline and the monitor datasets at each iteration of the inversion. Regions where these gradients consistently have opposing sign are likely to correspond to locations of time-lapse change. This insight is used to generate a spatially varying confidence map for time-lapse change. In a subsequent joint inversion we invert for baseline and monitor models while regularizing the difference between the models with this spatially varying confidence map. Unlike double difference full waveform inversion (DDFWI) we do not require identical source and receiver positions in the baseline and monitor surveys

    Fluid moment hierarchy equations derived from gauge invariant quantum kinetic theory

    Full text link
    The gauge invariant electromagnetic Wigner equation is taken as the basis for a fluid-like system describing quantum plasmas, derived from the moments of the gauge invariant Wigner function. The use of the standard, gauge dependent Wigner function is shown to produce inconsistencies, if a direct correspondence principle is applied. The propagation of linear transverse waves is considered and shown to be in agreement with the kinetic theory in the long wavelength approximation, provided an adequate closure is chosen for the macroscopic equations. A general recipe to solve the closure problem is suggested.Comment: 12 pages, 1 figur

    Spin and magnetization effects in plasmas

    Full text link
    We give a short review of a number of different models for treating magnetization effects in plasmas. In particular, the transition between kinetic models and fluid models is discussed. We also give examples of applications of such theories. Some future aspects are discussed.Comment: 18 pages, 1 figure. To appear in Plasma Physics and Controlled Fusion, Special Issue for the 37th ICPP, Santiago, Chil

    Spin induced nonlinearities in the electron MHD regime

    Full text link
    We consider the influence of the electron spin on the nonlinear propagation of whistler waves. For this purpose a recently developed electron two-fluid model, where the spin up- and down populations are treated as different fluids, is adapted to the electron MHD regime. We then derive a nonlinear Schrodinger equation for whistler waves, and compare the coefficients of nonlinearity with and without spin effects. The relative importance of spin effects depend on the plasma density and temperature as well as the external magnetic field strength and the wave frequency. The significance of our results to various plasmas are discussed.Comment: 5 page
    • …
    corecore