33 research outputs found

    Eradication of Metastatic Renal Cell Carcinoma after Adenovirus-Encoded TNF-Related Apoptosis-Inducing Ligand (TRAIL)/CpG Immunotherapy

    Get PDF
    Despite evidence that antitumor immunity can be protective against renal cell carcinoma (RCC), few patients respond objectively to immunotherapy and the disease is fatal once metastases develop. We asked to what extent combinatorial immunotherapy with Adenovirus-encoded murine TNF-related apoptosis-inducing ligand (Ad5mTRAIL) plus CpG oligonucleotide, given at the primary tumor site, would prove efficacious against metastatic murine RCC. To quantitate primary renal and metastatic tumor growth in mice, we developed a luciferase-expressing Renca cell line, and monitored tumor burdens via bioluminescent imaging. Orthotopic tumor challenge gave rise to aggressive primary tumors and lung metastases that were detectable by day 7. Intra-renal administration of Ad5mTRAIL+CpG on day 7 led to an influx of effector phenotype CD4 and CD8 T cells into the kidney by day 12 and regression of established primary renal tumors. Intra-renal immunotherapy also led to systemic immune responses characterized by splenomegaly, elevated serum IgG levels, increased CD4 and CD8 T cell infiltration into the lungs, and elimination of metastatic lung tumors. Tumor regression was primarily dependent upon CD8 T cells and resulted in prolonged survival of treated mice. Thus, local administration of Ad5mTRAIL+CpG at the primary tumor site can initiate CD8-dependent systemic immunity that is sufficient to cause regression of metastatic lung tumors. A similar approach may prove beneficial for patients with metastatic RCC

    Mixtures of Poly(triethylenetetramine/cystamine bisacrylamide) and Poly(triethylenetetramine/cystamine bisacrylamide)-g-poly(ethylene glycol) for Improved Gene Delivery

    No full text
    Branched disulfide-containing poly(amido ethyleneimines) (SS-PAEIs) are biodegradable polymeric gene carrier analogues of the well-studied, nondegradable, and often toxic branched polyethylenimines (bPEIs), but with distinct advantages for cellular transgene delivery. Clinical success of polycationic gene carriers is hampered by obscure design and formulation requirements. This present work reports synthetic and formulation properties for a graft copolymer of poly(ethylene glycol) (PEG) and a branched SS-PAEI, poly(triethylentetramine/cystaminebisacrylamide) (p(TETA/CBA)). Several laboratories have previously demonstrated the advantages of PEG conjugation to gene carriers, but have also shown that PEG conjugation may perturb plasmid DNA (pDNA) condensation, thereby interfering with nanoparticle formation. With this foundation, our studies sought to mix various amounts of p(TETA/CBA) and p(TETA/CBA)-g-PEG2k to alter the relative amount of PEG in each formulation used for polyplex formation. The influence of different PEG/polycation amounts in the formulations on polymer/nucleic acid nanoparticle (polyplex) size, surface charge, morphology, serum stability and transgene delivery was studied. Polyp lex formulations were prepared using p(TETA/CBA)-g-PEG2k, p(TETA/CBA), and mixtures of the two species at 10/90 and 50/50 volumetric mixture ratios (wt/wt %), respectively. As expected, increasing the amount of PEG in the formulation adversely affects polyplex formation. However, optimal polymer mixtures could be identified using this facile approach to further clarify design and formulation requirements necessary to understand and optimize carrier stability and biological activity. This work demonstrates the feasibility to easily overcome typical problems observed when polycations are modified and thus avoids the need to synthesize multiple copolymers to identify optimal gene carrier candidates. This approach may be applied to other polycation-PEG preparations to alter polyplex characteristics for optimal stability and biological activity.X112224sciescopu

    REDUCIBLE POLY(AMIDO ETHYLENIMINE) DIRECTED TO ENHANCE RNA INTERFERENCE

    No full text
    Designing synthetic macromolecular vehicles with high transfection efficiency and low cytotoxicity has been a major interest in the development of non-viral gene carriers. A reducible poly(amido ethylenimine) (SS-PAEI) synthesized by addition copolymerization of triethylenetetramine and cystamine bis-acrylamide (poly(TETA/CBA)) was used as a carrier for small interference RNA (siRNA). Poly(TETA/CBA) could efficiently condense siRNA to form stable complexes under physiological conditions and perform complete release of siRNA in a reductive environment. When formulated with VEGF-directed siRNA, poly(TETA/CBA) demonstrated significantly higher suppression of VEGF than linear-polyethylenimine (PEI) (L-PEI, 25 kDa) in human prostate cancer cells (PC-3). After 5 h of transfection, substantial dissociation and intracellular distribution of siRNA was observed in the poly(TETA/CBA) formulation, but not in the L-PEI formulation. The triggered release of siRNA by reductive degradation of poly(TETA/CBA) in the cytoplasm may affect the RNAi activity by increasing cytoplasmic availability of siRNA. These results suggest that the rational design of non-viral carriers should involve considerations for intracellular dissociation and trafficking of a nucleic acid drug to maximize its effect, in conjunction with formation of stable complexes under physiological conditions. (c) 2006 Elsevier Ltd. All rights reserved.X11143sciescopu

    Dual bio-responsive gene delivery via reducible poly(amido amine) and survivin-inducible plasmid DNA

    No full text
    A bioreducible poly(amido amine) (SS-PAA) gene carrier, known as poly (amido-butanol) (pABOL), was used to transfect a variety of cancer and non-cancer cell lines. To obtain cancer-specific transgene expression for therapeutic efficiency in cancer treatment, we constructed survivin-inducible plasmid DNA expressing the soluble VEGF receptor, sFlt-1, downstream of the survivin promoter (pSUR-sFlt-1). Cancer-specific expression of sFlt-1 was observed in the mouse renal carcinoma (RENCA) cell line. pABOL enhanced the efficiency of gene delivery compared to traditional carriers used in the past. Thus, a dual bio-responsive gene delivery system was developed by using bioreducible p(ABOL) for enhanced intracellular gene delivery and survivin-inducible gene expression system (pSUR-sFlt-1 or pSUR-Luc reporter gene) that demonstrates increased gene expression in cancer that has advantages over current gene delivery systems.X111112sciescopu
    corecore