52 research outputs found

    Lower extremity injury in female basketball players is related to a large difference in peak eversion torque between barefoot and shod conditions

    Get PDF
    AbstractBackgroundThe majority of injuries reported in female basketball players are ankle sprains and mechanisms leading to injury have been debated. Investigations into muscular imbalances in barefoot versus shod conditions and their relationship with injury severity have not been performed. The purpose of this study was to investigate the effects of wearing athletic shoes on muscular strength and its relationship to lower extremity injuries, specifically female basketball players due to the high incidence of ankle injuries in this population.MethodsDuring pre-season, 11 female collegiate basketball players underwent inversion and eversion muscle strength testing using an isokinetic dynamometer in both a barefoot and shod conditions. The difference between conditions was calculated for inversion and eversion peak torque, time to peak torque as well as eversion-to-inversion peak torque percent strength ratio for both conditions. Lower extremity injuries were documented and ranked in severity. The ranked difference between barefoot and shod conditions for peak torque and time to peak torque as well as percent strength ratio was correlated with injury ranking using a Spearman rho correlation (ρ) with an α level of 0.05.ResultsThe ranked differences in barefoot and shod for peak eversion and inversion torque at 120°/s were correlated with their injury ranking. Ranking of the athletes based on the severity of injuries that were sustained during the season was found to have a strong, positive relationship with the difference in peak eversion torque between barefoot and shod (ρ = 0.78; p = 0.02).ConclusionIt is possible that a large discrepancy between strength in barefoot and shod conditions can predispose an athlete to injury. Narrowing the difference in peak eversion torque between barefoot and shod could decrease propensity to injury. Future work should investigate the effect of restoration of muscular strength during barefoot and shod exercise on injury rates

    Updated Perspectives on the Role of Biomechanics in COPD: Considerations for the Clinician

    Get PDF
    Patients with chronic obstructive pulmonary disease (COPD) demonstrate extra-pulmonary functional decline such as an increased prevalence of falls. Biomechanics offers insight into functional decline by examining mechanics of abnormal movement patterns. This review discusses biomechanics of functional outcomes, muscle mechanics, and breathing mechanics in patients with COPD as well as future directions and clinical perspectives. Patients with COPD demonstrate changes in their postural sway during quiet standing compared to controls, and these deficits are exacerbated when sensory information (eg, eyes closed) is manipulated. If standing balance is disrupted with a perturbation, patients with COPD are slower to return to baseline and their muscle activity is differential from controls. When walking, patients with COPD appear to adopt a gait pattern that may increase stability (eg, shorter and wider steps, decreased gait speed) in addition to altered gait variability. Biomechanical muscle mechanics (ie, tension, extensibility, elasticity, and irritability) alterations with COPD are not well documented, with relatively few articles investigating these properties. On the other hand, dyssynchronous motion of the abdomen and rib cage while breathing is well documented in patients with COPD. Newer biomechanical technologies have allowed for estimation of regional, compartmental, lung volumes during activity such as exercise, as well as respiratory muscle activation during breathing. Future directions of biomechanical analyses in COPD are trending toward wearable sensors, big data, and cloud computing. Each of these offers unique opportunities as well as challenges. Advanced analytics of sensor data can offer insight into the health of a system by quantifying complexity or fluctuations in patterns of movement, as healthy systems demonstrate flexibility and are thus adaptable to changing conditions. Biomechanics may offer clinical utility in prediction of 30-day readmissions, identifying disease severity, and patient monitoring. Biomechanics is complementary to other assessments, capturing what patients do, as well as their capability

    Gait mechanics in patients with chronic obstructive pulmonary disease.

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by the frequent association of disease outside the lung. The objective of this study was to determine the presence of biomechanical gait abnormalities in COPD patients compared to healthy controls while well rested and without rest. METHODS: Patients with COPD (N = 17) and aged-matched, healthy controls (N = 21) walked at their self-selected pace down a 10-meter walkway while biomechanical gait variables were collected. A one-minute rest was given between each of the five collected trials to prevent tiredness (REST condition). Patients with COPD then walked at a self-selected pace on a treadmill until the onset of self-reported breathlessness or leg tiredness. Subjects immediately underwent gait analysis with no rest between each of the five collected trials (NO REST condition). Statistical models with and without covariates age, gender, and smoking history were used. RESULTS: After adjusting for covariates, COPD patients demonstrated more ankle power absorption in mid-stance (P = 0.006) than controls during both conditions. Both groups during NO REST demonstrated increased gait speed (P = 0.04), stride length (P = 0.03), and peak hip flexion (P = 0.04) with decreased plantarflexion moment (P = 0.04) and increased knee power absorption (P = 0.04) as compared to REST. A significant interaction revealed that peak ankle dorsiflexion moment was maintained from REST to NO REST for COPD but increased for controls (P \u3c 0.01). Stratifying by disease severity did not alter these findings, except that step width decreased in NO REST as compared to REST (P = 0.01). Standardized effect sizes of significant effects varied from 0.5 to 0.98. CONCLUSIONS: Patients with COPD appear to demonstrate biomechanical gait changes at the ankle as compared to healthy controls. This was seen not only in increased peak ankle power absorption during no rest but was also demonstrated by a lack of increase in peak ankle dorsiflexion moment from the REST to the NO REST condition as compared to the healthy controls. Furthermore, a wider step width has been associated with fall risk and this could account for the increased incidence of falls in patients with COPD

    Gait mechanics in patients with chronic obstructive pulmonary disease

    Get PDF
    Background Chronic obstructive pulmonary disease (COPD) is characterized by the frequent association of disease outside the lung. The objective of this study was to determine the presence of biomechanical gait abnormalities in COPD patients compared to healthy controls while well rested and without rest. Methods Patients with COPD (N = 17) and aged-matched, healthy controls (N = 21) walked at their self-selected pace down a 10-meter walkway while biomechanical gait variables were collected. A one-minute rest was given between each of the five collected trials to prevent tiredness (REST condition). Patients with COPD then walked at a self-selected pace on a treadmill until the onset of self-reported breathlessness or leg tiredness. Subjects immediately underwent gait analysis with no rest between each of the five collected trials (NO REST condition). Statistical models with and without covariates age, gender, and smoking history were used. Results After adjusting for covariates, COPD patients demonstrated more ankle power absorption in mid-stance (P = 0.006) than controls during both conditions. Both groups during NO REST demonstrated increased gait speed (P = 0.04), stride length (P = 0.03), and peak hip flexion (P = 0.04) with decreased plantarflexion moment (P = 0.04) and increased knee power absorption (P = 0.04) as compared to REST. A significant interaction revealed that peak ankle dorsiflexion moment was maintained from REST to NO REST for COPD but increased for controls (P \u3c 0.01). Stratifying by disease severity did not alter these findings, except that step width decreased in NO REST as compared to REST (P = 0.01). Standardized effect sizes of significant effects varied from 0.5 to 0.98. Conclusions Patients with COPD appear to demonstrate biomechanical gait changes at the ankle as compared to healthy controls. This was seen not only in increased peak ankle power absorption during no rest but was also demonstrated by a lack of increase in peak ankle dorsiflexion moment from the REST to the NO REST condition as compared to the healthy controls. Furthermore, a wider step width has been associated with fall risk and this could account for the increased incidence of falls in patients with COPD

    Gait deficiencies associated with peripheral artery disease are different than chronic obstructive pulmonary disease

    Get PDF
    Objective: Previous studies have indicated that patients with peripheral artery disease (PAD), display significant differences in their kinetic and kinematic gait characteristics when compared to healthy, aged-matched controls. The ability of patients with chronic obstructive pulmonary disease (COPD) to ambulate is also limited. These limitations are likely due to pathology-driven muscle morphology and physiology alterations establish in PAD and COP, respectively. Gait changes in PAD were compared to gait changes due to COPD to further understand how altered limb muscle due to disease can alter walking patterns. Both groups were independently compared to healthy controls. It was hypothesized that both patients with PAD and COPD would demonstrate similar differences in gait when compared to healthy controls. Methods: Patients with PAD (n=25), patients with COPD (n=16), and healthy older control subjects (n=25) performed five walking trials at self-selected speeds. Sagittal plane joint kinematic and kinetic group means were compared. Results: Peak values for hip flexion angle, braking impulse, and propulsive impulse were significantly reduced in patients with symptomatic PAD compared to patients with COPD. After adjusting for walking velocity, significant reductions (p Conclusions: The results of this study demonstrate that while gait patterns are impaired for patients with PAD, this is not apparent for patients with COPD (without PAD). PAD (without COPD) causes changes to the muscle function of the lower limbs that affects gait even when subjects walk from a fully rested state. Altered muscle function in patients with COPD does not have a similar effect

    Differences in Walking Pattern during 6-Min Walk Test between Patients with COPD and Healthy Subjects

    Get PDF
    BACKGROUND: To date, detailed analyses of walking patterns using accelerometers during the 6-min walk test (6MWT) have not been performed in patients with chronic obstructive pulmonary disease (COPD). Therefore, it remains unclear whether and to what extent COPD patients have an altered walking pattern during the 6MWT compared to healthy elderly subjects. METHODOLOGY/PRINCIPAL FINDINGS: 79 COPD patients and 24 healthy elderly subjects performed the 6MWT wearing an accelerometer attached to the trunk. The accelerometer features (walking intensity, cadence, and walking variability) and subject characteristics were assessed and compared between groups. Moreover, associations were sought with 6-min walk distance (6MWD) using multiple ordinary least squares (OLS) regression models. COPD patients walked with a significantly lower walking intensity, lower cadence and increased walking variability compared to healthy subjects. Walking intensity and height were the only two significant determinants of 6MWD in healthy subjects, explaining 85% of the variance in 6MWD. In COPD patients also age, cadence, walking variability measures and their interactions were included were significant determinants of 6MWD (total variance in 6MWD explained: 88%). CONCLUSIONS/SIGNIFICANCE: COPD patients have an altered walking pattern during 6MWT compared to healthy subjects. These differences in walking pattern partially explain the lower 6MWD in patients with COPD

    Introducing Statistical Persistence Decay:A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait

    Get PDF
    Stride-to-stride time intervals during human walking are characterised by predictability and statistical persistence quantified by sample entropy (SaEn) and detrended fluctuation analysis (DFA) which indicates a time dependency in the gait pattern. However, neither analyses quantify time dependency in a physical or physiological interpretable time scale. Recently, entropic half-life (ENT½) has been introduced as a measure of the time dependency on an interpretable time scale. A novel measure of time dependency, based on DFA, statistical persistence decay (SPD), was introduced. The present study applied SaEn, DFA, ENT½, and SPD in known theoretical signals (periodic, chaotic, and random) and stride-to-stride time intervals during overground and treadmill walking in healthy subjects. The analyses confirmed known properties of the theoretical signals. There was a significant lower predictability (p = 0.033) and lower statistical persistence (p = 0.012) during treadmill walking compared to overground walking. No significant difference was observed for ENT½ and SPD between walking condition, and they exhibited a low correlation. ENT½ showed that predictability in stride time intervals was halved after 11–14 strides and SPD indicated that the statistical persistency was deteriorated to uncorrelated noise after ~50 strides. This indicated a substantial time memory, where information from previous strides affected the future strides

    Alterations in stride-to-stride fluctuations in patients with chronic obstructive pulmonary disease during a self-paced treadmill 6-minute walk test.

    Full text link
    Evaluating variability and stability using measures for nonlinear dynamics may provide additional insight into the structure of the locomotor system, reflecting the neuromuscular system's organization of gait. This is in particular of interest when this system is affected by a respiratory disease and it's extrapulmonary manifestations. This study assessed stride-to-stride fluctuations and gait stability in patients with chronic obstructive pulmonary disease (COPD) during a self-paced, treadmill 6-minute walk test (6MWT) and its association with clinical outcomes. In this cross-sectional study, eighty patients with COPD (age 62±7y; forced expiratory volume in first second 56±19%predicted) and 39 healthy older adults (62±7y) were analyzed. Gait parameters including stride-to-stride fluctuations (coefficient of variation (CoV), predictability (sample entropy) and stability (Local Divergence Exponent (LDE)) were calculated over spatiotemporal parameters and center of mass velocity. Independent t-test, Mann-Whitney U test and ANCOVA analyses were conducted. Correlations were calculated between gait parameters, functional mobility using Timed Up and Go Test, and quadriceps muscle strength using dynamometry. Patients walked slower than healthy older adults. After correction for Speed, patients demonstrated increased CoV in stride length (F(1,116) = 5.658, p = 0.019), and increased stride length predictability (F(1,116) = 3.959, p = 0.049). Moderate correlations were found between mediolateral center of mass velocity LDE and normalized maximum peak torque (ρ = -0.549). This study showed that patients with COPD demonstrate alterations in stride length fluctuations even when adjusted for walking speed, highlighting the potential of nonlinear measures to detect alterations in gait function in patients with COPD. Association with clinical outcomes were moderate to weak, indicating that these clinical test are less discriminative for gait alterations
    corecore