170 research outputs found

    Evolution of the electronic band structure of twisted bilayer graphene upon doping

    Full text link
    The electronic band structure of twisted bilayer graphene develops van Hove singularities whose energy depends on the twist angle between the two layers. Using Raman spectroscopy, we monitor the evolution of the electronic band structure upon doping using the G peak area which is enhanced when the laser photon energy is resonant with the energy separation of the van Hove singularities. Upon charge doping, the Raman G peak area initially increases for twist angles larger than a critical angle and decreases for smaller angles. To explain this behavior with twist angle, the energy of separation of the van Hove singularities must decrease with increasing charge density demonstrating the ability to modify the electronic and optical properties of twisted bilayer graphene with doping.Comment: 10 pages, 4 figure

    Pressure-induced commensurate stacking of graphene on boron nitride

    Full text link
    Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighboring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunneling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.Comment: 17 pages, 4 figures and supplementary information. Updated to published versio

    Electric Field Control of Soliton Motion and Stacking in Trilayer Graphene

    Get PDF
    The crystal structure of a material plays an important role in determining its electronic properties. Changing from one crystal structure to another involves a phase transition which is usually controlled by a state variable such as temperature or pressure. In the case of trilayer graphene, there are two common stacking configurations (Bernal and rhombohedral) which exhibit very different electronic properties. In graphene flakes with both stacking configurations, the region between them consists of a localized strain soliton where the carbon atoms of one graphene layer shift by the carbon-carbon bond distance. Here we show the ability to move this strain soliton with a perpendicular electric field and hence control the stacking configuration of trilayer graphene with only an external voltage. Moreover, we find that the free energy difference between the two stacking configurations scales quadratically with electric field, and thus rhombohedral stacking is favored as the electric field increases. This ability to control the stacking order in graphene opens the way to novel devices which combine structural and electrical properties

    Band Structure Mapping of Bilayer Graphene via Quasiparticle Scattering

    Get PDF
    A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0=3.1\gamma_0 = 3.1 eV, γ1=0.39\gamma_1 = 0.39 eV, and γ4=0.22\gamma_4 = 0.22 eV.Comment: 12 pages, 4 figure

    HPV prevalence and concordance in the cervix and oral cavity of pregnant women.

    Get PDF
    OBJECTIVES: This investigation examined human papillomavirus (HPV) in pregnant women in order to characterize viral prevalence, types and concordance between infection in the cervix and in the oral cavity. METHODS: A total of 577 pregnant women seeking routine obstetric care were evaluated for HPV infection in their cervix during gestation and immediately before delivery, and in the oral cavity during gestation. Male partners present during the gestational clinic visit also provided a specimen from their oral cavity. HPV assessment was performed by PCR, dot blot hybridization and DNA sequencing. A sexual and health questionnaire was completed by the pregnant women. RESULTS: HPV prevalence in women was 29% in the cervix and 2.4% in the oral cavity. Among those with both gestational and delivery specimens, 35% were infected at least once and 20% had infection at both intervals. At delivery, 68% of infected women had an oncogenic HPV type in the cervix. There was no type-specific HPV concordance between the two cervical specimens, nor cervical and oral results in women, nor with cervical and oral findings between partners. CONCLUSION: The lack of association in HPV positivity and types between the cervix and oral cavity in these women suggests that self-inoculation is uncommon. This source of infection does not appear to be from oral contact with a current male partner, since there also was no concordance between partners. These results suggest either other modes of HPV transmission or differences in susceptibility to HPV infection or its clearance in the oral cavity and genital mucosa

    Infants later diagnosed with autism have lower canonical babbling ratios in the first year of life

    Get PDF
    BACKGROUND: Canonical babbling-producing syllables with a mature consonant, full vowel, and smooth transition-is an important developmental milestone that typically occurs in the first year of life. Some studies indicate delayed or reduced canonical babbling in infants at high familial likelihood for autism spectrum disorder (ASD) or who later receive an ASD diagnosis, but evidence is mixed. More refined characterization of babbling in the first year of life in infants with high likelihood for ASD is needed. METHODS: Vocalizations produced at 6 and 12 months by infants (n = 267) taking part in a longitudinal study were coded for canonical and non-canonical syllables. Infants were categorized as low familial likelihood (LL), high familial likelihood diagnosed with ASD at 24 months (HL-ASD) or not diagnosed (HL-Neg). Language delay was assessed based on 24-month expressive and receptive language scores. Canonical babble ratio (CBR) was calculated by dividing the number of canonical syllables by the number of total syllables. Generalized linear (mixed) models were used to assess the relationship between group membership and CBR, controlling for site, sex, and maternal education. Logistic regression was used to assess whether canonical babbling ratios at 6 and 12 months predict 24-month diagnostic outcome. RESULTS: No diagnostic group differences in CBR were detected at 6 months, but HL-ASD infants produced significantly lower CBR than both the HL-Neg and LL groups at 12 months. HL-Neg infants with language delay also showed reduced CBR at 12 months. Neither 6- nor 12-month CBR was significant predictors of 24-month diagnostic outcome (ASD versus no ASD) in logistic regression. LIMITATIONS: Small numbers of vocalizations produced by infants at 6 months may limit the reliability of CBR estimates. It is not known if results generalize to infants who are not at high familial likelihood, or infants from more diverse racial and socioeconomic backgrounds. CONCLUSIONS: Lower canonical babbling ratios are apparent by the end of the first year of life in ASD regardless of later language delay, but are also observed for infants with later language delay without ASD. Canonical babbling may lack specificity as an early marker when used on its own

    Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride

    Get PDF
    The Schr\"odinger equation dictates that the propagation of nearly free electrons through a weak periodic potential results in the opening of band gaps near points of the reciprocal lattice known as Brillouin zone boundaries. However, in the case of massless Dirac fermions, it has been predicted that the chirality of the charge carriers prevents the opening of a band gap and instead new Dirac points appear in the electronic structure of the material. Graphene on hexagonal boron nitride (hBN) exhibits a rotation dependent Moir\'e pattern. In this letter, we show experimentally and theoretically that this Moir\'e pattern acts as a weak periodic potential and thereby leads to the emergence of a new set of Dirac points at an energy determined by its wavelength. The new massless Dirac fermions generated at these superlattice Dirac points are characterized by a significantly reduced Fermi velocity. The local density of states near these Dirac cones exhibits hexagonal modulations indicating an anisotropic Fermi velocity.Comment: 16 pages, 6 figure

    Ripple modulated electronic structure of a 3D topological insulator

    Full text link
    3D topological insulators, similar to the Dirac material graphene, host linearly dispersing states with unique properties and a strong potential for applications. A key, missing element in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Analogy with graphene suggests a possible avenue via a topographic route by the formation of superlattice structures such as a moir\'e patterns or ripples, which can induce controlled potential variations. However, while the charge and lattice degrees of freedom are intimately coupled in graphene, it is not clear a priori how a physical buckling or ripples might influence the electronic structure of topological insulators. Here we use Fourier transform scanning tunneling spectroscopy to determine the effects of a one-dimensional periodic buckling on the electronic properties of Bi2Te3. By tracking the spatial variations of the scattering vector of the interference patterns as well as features associated with bulk density of states, we show that the buckling creates a periodic potential modulation, which in turn modulates the surface and the bulk states. The strong correlation between the topographic ripples and electronic structure indicates that while doping alone is insufficient to create predetermined potential landscapes, creating ripples provides a path to controlling the potential seen by the Dirac electrons on a local scale. Such rippled features may be engineered by strain in thin films and may find use in future applications of topological insulators.Comment: Nature Communications (accepted
    corecore