353 research outputs found

    Stochastic transitions of attractors in associative memory models with correlated noise

    Full text link
    We investigate dynamics of recurrent neural networks with correlated noise to analyze the noise's effect. The mechanism of correlated firing has been analyzed in various models, but its functional roles have not been discussed in sufficient detail. Aoyagi and Aoki have shown that the state transition of a network is invoked by synchronous spikes. We introduce two types of noise to each neuron: thermal independent noise and correlated noise. Due to the effects of correlated noise, the correlation between neural inputs cannot be ignored, so the behavior of the network has sample dependence. We discuss two types of associative memory models: one with auto- and weak cross-correlation connections and one with hierarchically correlated patterns. The former is similar in structure to Aoyagi and Aoki's model. We show that stochastic transition can be presented by correlated rather than thermal noise. In the latter, we show stochastic transition from a memory state to a mixture state using correlated noise. To analyze the stochastic transitions, we derive a macroscopic dynamic description as a recurrence relation form of a probability density function when the correlated noise exists. Computer simulations agree with theoretical results.Comment: 21 page

    Oscillator neural network model with distributed native frequencies

    Full text link
    We study associative memory of an oscillator neural network with distributed native frequencies. The model is based on the use of the Hebb learning rule with random patterns (ξiμ=±1\xi_i^{\mu}=\pm 1), and the distribution function of native frequencies is assumed to be symmetric with respect to its average. Although the system with an extensive number of stored patterns is not allowed to get entirely synchronized, long time behaviors of the macroscopic order parameters describing partial synchronization phenomena can be obtained by discarding the contribution from the desynchronized part of the system. The oscillator network is shown to work as associative memory accompanied by synchronized oscillations. A phase diagram representing properties of memory retrieval is presented in terms of the parameters characterizing the native frequency distribution. Our analytical calculations based on the self-consistent signal-to-noise analysis are shown to be in excellent agreement with numerical simulations, confirming the validity of our theoretical treatment.Comment: 9 pages, revtex, 6 postscript figures, to be published in J. Phys.

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.

    Cortical-Bone Fragility - Insights from sFRP4 Deficiency in Pyle's Disease

    Get PDF
    BACKGROUND Cortical-bone fragility is a common feature in osteoporosis that is linked to non - vertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS We evaluated four patients with Pyle’s disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger se - quencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS In all affected patients, we found biallelic truncating mutations in SFR P4 , the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4 , like persons with Pyle’s disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treat - ment of Sfrp4- deficient mice with a soluble Bmp2 receptor (RAP-661) or with anti - bodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS Our study showed that Pyle’s disease was caused by a deficiency of sFRP4, that cortical- bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss Na - tional Foundation and the National Institutes of Health.

    Improvement in accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gap cost

    Get PDF
    BACKGROUND: Multiple sequence alignment (MSA) is a useful tool in bioinformatics. Although many MSA algorithms have been developed, there is still room for improvement in accuracy and speed. In the alignment of a family of protein sequences, global MSA algorithms perform better than local ones in many cases, while local ones perform better than global ones when some sequences have long insertions or deletions (indels) relative to others. Many recent leading MSA algorithms have incorporated pairwise alignment information obtained from a mixture of sources into their scoring system to improve accuracy of alignment containing long indels. RESULTS: We propose a novel group-to-group sequence alignment algorithm that uses a piecewise linear gap cost. We developed a program called PRIME, which employs our proposed algorithm to optimize the well-defined sum-of-pairs score. PRIME stands for Profile-based Randomized Iteration MEthod. We evaluated PRIME and some recent MSA programs using BAliBASE version 3.0 and PREFAB version 4.0 benchmarks. The results of benchmark tests showed that PRIME can construct accurate alignments comparable to the most accurate programs currently available, including L-INS-i of MAFFT, ProbCons, and T-Coffee. CONCLUSION: PRIME enables users to construct accurate alignments without having to employ pairwise alignment information. PRIME is available at

    IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity

    Get PDF
    Increasing evidence suggests that inflammation plays a central role in driving joint pathology in certain patients with osteoarthritis (OA). Since many patients with OA are obese and increased adiposity is associated with chronic inflammation, we investigated whether obese patients with hip OA exhibited differential pro-inflammatory cytokine signalling and peripheral and local lymphocyte populations, compared to normal weight hip OA patients. No differences in either peripheral blood or local lymphocyte populations were found between obese and normal-weight hip OA patients. However, synovial fibroblasts from obese OA patients were found to secrete greater amounts of the pro-inflammatory cytokine IL-6, compared to those from normal-weight patients (p < 0.05), which reflected the greater levels of IL-6 detected in the synovial fluid of the obese OA patients. Investigation into the inflammatory mechanism demonstrated that IL-6 secretion from synovial fibroblasts was induced by chondrocyte-derived IL-6. Furthermore, this IL-6 inflammatory response, mediated by chondrocyte-synovial fibroblast cross-talk, was enhanced by the obesity-related adipokine leptin. This study suggests that obesity enhances the cross-talk between chondrocytes and synovial fibroblasts via raised levels of the pro-inflammatory adipokine leptin, leading to greater production of IL-6 in OA patients

    Nucleic acid-based fluorescent probes and their analytical potential

    Get PDF
    It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays
    corecore