1,027 research outputs found

    Using Abrupt Changes in Magnetic Susceptibility within Type-II Superconductors to Explore Global Decoherence Phenomena

    Full text link
    A phenomenon of a periodic staircase of macroscopic jumps in the admitted magnetic field has been observed, as the magnitude of an externally applied magnetic field is smoothly increased or decreased upon a superconducting (SC) loop of type II niobium-titanium wire which is coated with a non-superconducting layer of copper. Large temperature spikes were observed to occur simultaneously with the jumps, suggesting brief transitions to the normal state, caused by en masse motions of Abrikosov vortices. An experiment that exploits this phenomenon to explore the global decoherence of a large superconducting system will be discussed, and preliminary data will be presented. Though further experimentation is required to determine the actual decoherence rate across the superconducting system, multiple classical processes are ruled out, suggesting that jumps in magnetic flux are fully quantum mechanical processes which may correspond to large group velocities within the global Cooper pair wavefunction.Comment: 13 pages, 4 figures, part of proceedings for FQMT 2011 conference in Prague, Czech Republi

    Quantum Noise and Superluminal Propagation

    Get PDF
    Causal "superluminal" effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an "optical tachyon." Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett., vol. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki [Phys. Rev. Lett., vol. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being "exponentially large." We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wavepackets considered by ARS, the residual wavepacket formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small.Comment: 30 pages, 1 figure, eps

    Weak-wave advancement in nearly collinear four-wave mixing

    Full text link
    We identify a new four-wave mixing process in which two nearly collinear pump beams produce phase-dependent gain into a weak bisector signal beam in a self-defocusing Kerr medium. Phase matching is achieved by weak-wave advancement caused by cross-phase modulation between the pump and signal beams. We relate this process to the inverse of spatial modulational instability and suggest a time-domain analog.Comment: 7 pages, 3 figure

    Simultaneous arrival of information in absorbing wave guides

    Full text link
    We demonstrate that the temporal peak generated by specific electromagnetic pulses may arrive at different positions simultaneously in an absorbing wave guide. The effect can be used for triggering several devices all at once at unknown distances from the sender or generally to transmit information so that it arrives at the same time to receivers at different, unknown locations. This simultaneity cannot be realized by the standard transmission methods

    Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?

    Get PDF
    Stable electrostatic levitation and trapping of a neutral, polarizable object by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur
    • …
    corecore