530,029 research outputs found

    Dissipation Effects in Hybrid Systems

    Get PDF
    The dissipation effect in a hybrid system is studied in this Letter. The hybrid system is a compound of a classical magnetic particle and a quantum single spin. Two cases are considered. In the first case, we investigate the effect of the dissipative quantum subsystem on the motion of its classical partner. Whereas in the second case we show how the dynamics of the quantum single spin are affected by the dissipation of the classical particle. Extension to general dissipative hybrid systems is discussed.Comment: 4+ pages, 4 figure

    A model for retention on short, intermediate and long time-scale in ferroelectric thin films

    Full text link
    We developed a model with no adjustable parameter for retention loss at short and long time scale in ferroelectric thin-film capacitors. We found that the predictions of this model are in good agreement with the experimental observations in the literature. In particular, it explains why a power-law function shows better fitting than a linear-log relation on a short time scale (10^-7 s to 1 s) and why a stretched exponential relation gives more precise description than a linear-log plot on a long time scale (>100 s), as reported by many researchers in the past. More severe retention losses at higher temperatures and in thinner films have also been correctly predicted by the present theory.Comment: 15 pages and 3 figure

    (1 + p)-Dimensional Open D(p - 2) Brane Theories

    Get PDF
    The dynamics of a Dp brane can be described either by an open string ending on this brane or by an open D(p - 2) brane ending on the same Dp brane. The ends of the open string couple to a Dp brane worldvolume gauge field while the boundary of the open D(p - 2) brane couples to a (p - 2)-form worldvolume potential whose field strength is Poincare dual to that of the gauge field on the Dp-brane worldvolume. With this in mind, we find that the Poincare dual of the fixed rank-2 magnetic field used in defining a (1 + p)-dimensional noncommutative Yang-Mills (NCYM) gives precisely a near-critical electric field for the open D(p - 2) brane. We therefore find (1 + p)-dimensional open D(p - 2) brane theories along the same line as for obtaining noncommutative open string theories (NCOS), OM theory and open Dp brane theories (ODp) from NS5 brane. Similarly, the Poincare dual of the near-critical electric field used in defining a (1 + p)-dimensional NCOS gives a fixed magnetic-like field. This field along with the same bulk field scalings defines a (1 + p)-dimensional noncommutative field theory. In the same spirit, we can have various (1 + 5)-dimensional noncommutative field theories resulting from the existence of ODp if the description of open D(4 - p) brane ending on the NS5 brane is insisted.Comment: 35 pages, references added and discussion on decoupled field theories refine

    The Carriers of the Interstellar Unidentified Infrared Emission Features: Constraints from the Interstellar C-H Stretching Features at 3.2-3.5 Micrometers

    Get PDF
    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometer, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to mixed aromatic/aliphatic organic nanoparticles. More recently, an upper limit of <9% on the aliphatic fraction (i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers based on the observed intensities of the 3.4 and 3.3 micrometer emission features by attributing them to aliphatic and aromatic C-H stretching modes, respectively, and assuming A_34./A_3.3~0.68 derived from a small set of aliphatic and aromatic compounds, where A_3.4 and A_3.3 are respectively the band strengths of the 3.4 micrometer aliphatic and 3.3 micrometer aromatic C-H bonds. To improve the estimate of the aliphatic fraction of the UIE carriers, here we analyze 35 UIE sources which exhibit both the 3.3 and 3.4 micrometer C-H features and determine I_3.4/I_3.3, the ratio of the power emitted from the 3.4 micrometer feature to that from the 3.3 micrometer feature. We derive the median ratio to be ~ 0.12. We employ density functional theory and second-order perturbation theory to compute A_3.4/A_3.3 for a range of methyl-substituted PAHs. The resulting A_3.4/A_3.3 ratio well exceeds 1.4, with an average ratio of ~1.76. By attributing the 3.4 micrometer feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity and superhydrogenation), we derive the fraction of C atoms in aliphatic form to be ~2%. We therefore conclude that the UIE emitters are predominantly aromatic.Comment: 14 pages, 5 figures, 1 table; accepted for publication in The Astrophysical Journa
    corecore