180 research outputs found
Fluorescence in situ hybridization-based approaches for detection of 12p overrepresentation, in particular i(12p), in cell lines of human testicular germ cell tumors of adults
Overrepresentation of the short arm of chromosome 12 is frequently detected in human testicular germ cell tumors of adolescents and adults (TGCT). This overrepresentation mostly results from the formation of an isochromosome i(12p). Whether the overrepresentation consistently involves the complete 12p arm including the centromere is still unclear. We studied five TGCT-derived cell line
Inhibin immunoreactivity in gonadal and non-gonadal tumors
Abstract
Inhibin immunoreactivity was estimated in a number of gonadal and non-gonadal tumors. Dog Sertoli cell tumors and human granulosa cell and Leydig cell tumors contained high concentrations of inhibin-like material. Levels, comparable with those in normal testes and ovaries were detected in human testicular non-seminomas and in ovarian cystadenomas, thecomas and adenofibromas. No activity was found in human testicular Sertoli/Leydig cell tumors and seminomas and in ovarian adenocarcinomas, teratomas and a dysgerminoma. Furthermore, human adrenal cortical tissue (tumor and hyperplastic adrenal) contained inhibin immunoreactivity. No activity was found in human tumors of the stomach, gut, liver, kidney, pancreas and mammary gland or in meningiomas. It is concluded that inhibin is not a good marker for specific gonadal tumors. Inhibin might have intratumor actions a growth or differentiation factor
Comparative genomic hybridization of germ cell tumors of the adult testis: Confirmation of karyotypic findings and identification of a 12p- amplicon
Comparative genomic hybridization (CGH) was carried out on 15 primary testicular germ cell tumors (TGCT) of adolescents and adults and two metastatic residual tumors after chemotherapeutic treatment. The results were compared with karyotypic data obtained form the same tumor specimens after direct harvesting of metaphases or short-term in vitro culture. Both techniques revealed that the most consistent abnormality in primary TGCT is gain of 12p-sequences. Although in most cases over-representation of the complete short arm was observed, CGH revealed a specific amplification of 12p11.1-p12.1 region in two independent primary tumors. In addition, loss of (parts of) chromosome 13 (always involving q31-qter), and gain of (parts of) chromosome 7 (mostly involving q11), (parts of) chromosome 8, and the X chromosome were detected in more than 25% of the tumors by this latter technique. Loss of 6q15-q21 in both re
Comparison of the chromosomal pattern of primary testicular nonseminomas and residual mature teratomas after chemotherapy
About 70 to 75% of patients with nonseminomatous testicular germ cell tumors (NSs) present with metastases. When these metastases are treated with chemotherapy, often residual mature teratoma (RMT) is left. RMT is composed of fully differentiated somatic tissue. Untreated metastases of NSs rarely consist exclusively of mature somatic tissue. Apparently, after chemotherapy treatment there is a shift towards higher degrees of differentiation. Investigating tumor progression and the mechanism(s) involved in therapy-related differentiation, we compared the cytogenetically abnormal karyotypes of a series of 70 NSs with those of 31 RMTs. In NSs and RMTs, the modal total chromosome number does not differ and is in the triploid range. Both the frequency and the average copy number of i(12p) are the same, and the pattern of chromosomal over-and underrepresentation and distribution of breakpoints do not differ significantly in these series. So, we found the chromosomal pattern of RMTs as abnormal as those of primary NSs. Based on cytogenetics, we found no indication that specific chromosomal alterations parallel metastasis and therapy-related differentiation of the metastases. The cytogenetic data suggest that both induction of differentiation of (selected) cells or selection of cells with capacity to differentiate are possible mechanisms for the therapy-related differentiation of RMTs. (C) Elsevier Science Inc., 1997
Prevalence of c-KIT mutations in gonadoblastoma and dysgerminomas of patients with disorders of sex development (DSD) and ovarian dysgerminomas
Activating c-KIT mutations (exons 11 and 17) are found in 10-40% of testicular seminomas, the majority being missense point mutations (codon 816). Malignant ovarian dysgerminomas represent similar to 3% of all ovarian cancers in Western countries, resembling testicular seminomas, regarding chromosomal aberrations and c-KIT mutations. DSD patients with specific Y-sequences have an increased risk for Type II Germ Cell Tumor/Cancer, with gonadoblastoma as precursor progressing to dysgerminoma. Here we present analysis of c-KIT exon 8, 9, 11, 13 and 17, and PDGFRA exon 12, 14 and 18 by conventional sequencing together with mutational analysis of c-KIT codon 816 by a sensitive and specific LightCycler melting curve analysis, confirmed by sequencing. The results are combined with data on TSPY and OCT3/4 expression in a series of 16 DSD patients presenting with gonadoblastoma and dysgerminoma and 15 patients presenting pure ovarian dysgerminomas without DSD. c-KIT codon 816 mutations were detected in five out of the total of 31 cases (all found in pure ovarian dysgerminomas). A synonymous SNP (rs 5578615) was detected in two patients, one DSD patient (with bilateral disease) and one patient with dysgerminoma. Next to these, three codon N822K mutations were detected in the group of 15 pure ovarian dysgerminomas. In total activating c-KIT mutations were found in 53% of ovarian dysgerminomas without DSD. In the group of 16 DSD cases a N505I and D820E mutation was found in a single tumor of a patient with gonadoblastoma and dysgerminoma. No PDGFRA mutations were found. Positive OCT3/4 staining was present in all gonadoblastomas and dysgerminomas investigated, TSPY expression was only seen in the gonadoblastoma/dysgerminoma lesions of the 16 DSD patients. This data supports the existence of two distinct but parallel pathways in the development of dysgerminoma, in which mutational status of c-KIT might parallel the presence of TSPY
- …