28 research outputs found

    Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis.

    Get PDF
    An estimated one-third of the world population is latently infected with Mycobacterium tuberculosis. These nonreplicating, dormant bacilli are tolerant to conventional anti-tuberculosis drugs, such as isoniazid. We recently identified diarylquinoline R207910 (also called TMC207) as an inhibitor of ATP synthase with a remarkable activity against replicating mycobacteria. In the present study, we show that R207910 kills dormant bacilli as effectively as aerobically grown bacilli with the same target specificity. Despite a transcriptional down-regulation of the ATP synthase operon and significantly lower cellular ATP levels, we show that dormant mycobacteria do possess residual ATP synthase enzymatic activity. This activity is blocked by nanomolar concentrations of R207910, thereby further reducing ATP levels and causing a pronounced bactericidal effect. We conclude that this residual ATP synthase activity is indispensable for the survival of dormant mycobacteria, making it a promising drug target to tackle dormant infections. The unique dual bactericidal activity of diarylquinolines on dormant as well as replicating bacterial subpopulations distinguishes them entirely from the current anti-tuberculosis drugs and underlines the potential of R207910 to shorten tuberculosis treatment. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc

    In vitro activity of pirodavir (R 77975), a substituted phenoxy-pyridazinamine with broad-spectrum antipicornaviral activity.

    No full text
    Pirodavir (R 77975) is the prototype of a novel class of broad-spectrum antipicornavirus compounds. Although its predecessor, R 61837, a substituted phenyl-pyridazinamine, was effective in inhibiting 80% of 100 serotypes tested (EC80) at concentrations above 32 micrograms/ml, pirodavir inhibits the same percentage of viruses at 0.064 micrograms/ml. Whereas R 61837 was active almost exclusively against rhinovirus serotypes of antiviral group B, pirodavir is broad spectrum in that it is highly active against both group A and group B rhinovirus serotypes. Pirodavir is also effective in inhibiting 16 enteroviruses, with an EC80 of 1.3 micrograms/ml. Susceptible rhinovirus serotypes were rendered noninfectious by direct contact with the antiviral compound. Their infectivity was not restored by dilution of virus-drug complexes, but was regained by organic solvent extraction of the compound for most serotypes. Neutralized viruses became stabilized to acid and heat, strongly suggesting a direct interaction of the compounds with viral capsid proteins. Mutants resistant to R 61837 (up to 85 times the MIC) were shown to bear some cross-resistance (up to 23 times the MIC) to the new compound, indicating that pirodavir also binds into the hydrophobic pocket beneath the canyon floor of rhinoviruses. Pirodavir acts at an early stage of the viral replication cycle (up to 40 min after infection) and reduces the yield of selected rhinoviruses 1,000- to 100,000-fold in a single round of replication. The mode of action appears to be serotype specific, since pirodavir was able to inhibit the adsorption of human rhinovirus 9 but not that of human rhinovirus 1A. Pirodavir is a novel capsid-binding antipicornavirus agent with potent in vitro activity against both group A and group B rhinovirus serotypes
    corecore