192 research outputs found

    Penetrative Convection at High Rayleigh Numbers

    Full text link
    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[106,108]Ra = \left[10^6, 10^8 \right] and the Prandtl numbers are Pr=1Pr = 1 and 11.611.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new non-dimensional parameter, Λ\Lambda, which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ\Lambda denote increased stability of the upper stable layer. We study the effects of Λ\Lambda on the flow field using well-resolved lattice Boltzmann simulations, and show that the characteristics of the flow depend sensitively upon it. For the range Λ=[0.01,4]\Lambda = \left[0.01, 4\right], we find that for a fixed RaRa the Nusselt number, NuNu, increases with decreasing Λ\Lambda. We also investigate the effects of Λ\Lambda on the vertical variation of convective heat flux and the Brunt-V\"{a}is\"{a}l\"{a} frequency. Our results clearly indicate that in the limit Λ→0\Lambda \rightarrow 0 the problem reduces to that of the classical Rayleigh-B\'enard convection.Comment: 12 pages, 19 figure

    Nonlinear threshold behavior during the loss of Arctic sea ice

    Get PDF
    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or “tipping point”) beyond which the ice–albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice–albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice–albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely

    Can planetesimals form by collisional fusion?

    Full text link
    As a test bed for the growth of protoplanetary bodies in a turbulent circumstellar disk we examine the fate of a boulder using direct numerical simulations of particle seeded gas flowing around it. We provide an accurate description of the flow by imposing no-slip and non-penetrating boundary conditions on the boulder surface using the immersed boundary method pioneered by Peskin (2002). Advected by the turbulent disk flow, the dust grains collide with the boulder and we compute the probability density function (PDF) of the normal component of the collisional velocity. Through this examination of the statistics of collisional velocities we test the recently developed concept of collisional fusion which provides a physical basis for a range of collisional velocities exhibiting perfect sticking. A boulder can then grow sufficiently rapidly to settle into a Keplerian orbit on disk evolution time scales.Comment: Astrophysical Journal, in pres

    Onsager reciprocity in premelting solids

    Get PDF
    The diffusive motion of foreign particles dispersed in a premelting solid is analyzed within the framework of irreversible thermodynamics. We determine the mass diffusion coefficient, thermal diffusion coefficient and Soret coefficient of the particles in the dilute limit, and find good agreement with experimental data. In contrast to liquid suspensions, the unique nature of premelting solids allows us to derive an expression for the Dufour coefficient and independently verify the Onsager reciprocal relation coupling diffusion to the flow of heat

    Theory of ice premelting in porous media

    Full text link
    Premelting describes the confluence of phenomena that are responsible for the stable existence of the liquid phase of matter in the solid region of its bulk phase diagram. Here we develop a theoretical description of the premelting of water ice contained in a porous matrix, made of a material with a melting temperature substantially larger than ice itself, to predict the amount of liquid water in the matrix at temperatures below its bulk freezing point. Our theory combines the interfacial premelting of ice in contact with the matrix, grain boundary melting in the ice, and impurity and curvature induced premelting, the latter occurring in regions which force the ice-liquid interface into a high curvature configuration. These regions are typically found at points where the matrix surface is concave, along contact lines of a grain boundary with the matrix, and in liquid veins. Both interfacial premelting and curvature induced premelting depend on the concentration of impurities in the liquid, which, due to the small segregation coefficient of impurities in ice are treated as homogeneously distributed in the premelted liquid. Our principal result is an equation for the fraction of liquid in the porous medium as a function of the undercooling, which embodies the combined effects of interfacial premelting, curvature induced premelting, and impurities. The result is analyzed in detail and applied to a range of experimentally relevant settings.Comment: 14 pages, 10 figures, accepted for publication in Physical Review

    Streaks to Rings to Vortex Grids: Generic Patterns in Transient Convective Spin-Up

    Full text link
    We observe the transient formation of a ringed pattern state during spin-up of an evaporating fluid on a time scale of order a few Ekman spin-up times. The ringed state is probed using infrared thermometry and particle image velocimetry and it is demonstrated to be a consequence of the transient balance between Coriolis and viscous forces which dominate inertia, each of which are extracted from the measured velocity field. The breakdown of the ringed state is quantified in terms of the antiphasing of these force components which drives a Kelvin-Helmholtz instability and we show that the resulting vortex grid spacing scales with the ring wavelength. This is the fundamental route to quasi-two dimensional turbulent vortex flow and thus may have implications in astrophysics and geophysics wherein rotating convection is ubiquitous. sics.Comment: 4 pages, 5 figure
    • …
    corecore