171 research outputs found

    Influence of caregiver network support and caregiver psychopathology on child mental health need and service use in the LONGSCAN study

    Get PDF
    Using structural equation modeling, this study examined the relationship of caregiver network support on caregiver and child mental health need, as well as child mental health service use among 1075 8-year-old children participating in the LONGSCAN study. The final model showed acceptable fit (χ2 = 301.476, df = 136, p<0.001; RMSEA = 0.052; CFI = 0.95). Caregiver and child mental health needs were positively related. As predicted, caregiver network support exerted a protective effect, with greater levels of caregiver network support predictive of lower caregiver and child need. Contrary to prediction, however, caregiver network support was not directly related to child service use. Higher child need was directly related to child service use, especially among children whose caregivers had mental health problems. The findings appear to indicate that lower levels of caregiver network support may exert its impact on child service use indirectly by increasing caregiver and child need, rather than by directly increasing the likelihood of receiving services, especially for African American children

    Reproducible image-based profiling with Pycytominer

    Full text link
    Technological advances in high-throughput microscopy have facilitated the acquisition of cell images at a rapid pace, and data pipelines can now extract and process thousands of image-based features from microscopy images. These features represent valuable single-cell phenotypes that contain information about cell state and biological processes. The use of these features for biological discovery is known as image-based or morphological profiling. However, these raw features need processing before use and image-based profiling lacks scalable and reproducible open-source software. Inconsistent processing across studies makes it difficult to compare datasets and processing steps, further delaying the development of optimal pipelines, methods, and analyses. To address these issues, we present Pycytominer, an open-source software package with a vibrant community that establishes an image-based profiling standard. Pycytominer has a simple, user-friendly Application Programming Interface (API) that implements image-based profiling functions for processing high-dimensional morphological features extracted from microscopy images of cells. Establishing Pycytominer as a standard image-based profiling toolkit ensures consistent data processing pipelines with data provenance, therefore minimizing potential inconsistencies and enabling researchers to confidently derive accurate conclusions and discover novel insights from their data, thus driving progress in our field.Comment: 13 pages, 4 figure

    OME-Zarr:a cloud-optimized bioimaging file format with international community support

    Get PDF
    A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks

    Cortisol dynamics during seawater adaptation of Atlantic salmon Salmo salar

    No full text

    Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils

    Full text link
    Abstract In order to determine whether human granulocyte-macrophage colony- stimulating factor (GM-CSF) can enhance phagocytosis, neutrophils were combined with Staphylococcus aureus (S aureus), and both the number of bacteria per neutrophil and the percent of neutrophils phagocytizing were assessed in the absence and presence of GM-CSF. Exposure to GM-CSF did not enable neutrophils to ingest unopsonized bacteria. When bacteria were opsonized with serum, both the number of bacteria per neutrophil and the percent of cells phagocytizing were increased by treatment with GM-CSF. Digestion of extracellular organisms by lysostaphin was used to substantiate phagocytosis. These results indicate that another effect of GM-CSF on the mature neutrophil is the enhancement of phagocytosis.</jats:p

    Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils

    Full text link
    In order to determine whether human granulocyte-macrophage colony- stimulating factor (GM-CSF) can enhance phagocytosis, neutrophils were combined with Staphylococcus aureus (S aureus), and both the number of bacteria per neutrophil and the percent of neutrophils phagocytizing were assessed in the absence and presence of GM-CSF. Exposure to GM-CSF did not enable neutrophils to ingest unopsonized bacteria. When bacteria were opsonized with serum, both the number of bacteria per neutrophil and the percent of cells phagocytizing were increased by treatment with GM-CSF. Digestion of extracellular organisms by lysostaphin was used to substantiate phagocytosis. These results indicate that another effect of GM-CSF on the mature neutrophil is the enhancement of phagocytosis.</jats:p

    Biosynthetic human GM-CSF modulates the number and affinity of neutrophil f-Met-Leu-Phe receptors.

    Full text link
    Abstract Human granulocyte-macrophage colony-stimulating factor (GM-CSF) modulates the function of mature neutrophils by priming for enhanced chemotaxis and oxidative metabolism in response to N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). Our studies establish a relationship between f-Met-Leu-Phe receptor number and affinity and neutrophil chemotaxis and oxidative metabolism. A brief (5- to 15-min) exposure to physiologic concentrations of GM-CSF (10 pM to 100 pM) enhances f-Met-Leu-Phe-induced neutrophil chemotaxis by 85%, correlating with a rapid threefold increase (46,000/cell to 150,000/cell) in high-affinity neutrophil f-Met-Leu-Phe receptors. More prolonged incubation (1 to 2 hr) of neutrophils with GM-CSF is accompanied by a change to low-affinity f-Met-Leu-Phe receptors (Kd = 29 nM to Kd = 99 nM) concomitant with priming for enhanced neutrophil oxidative metabolism. Moreover, enhanced chemotactic responses to f-Met-Leu-Phe are no longer evident after more prolonged incubation of neutrophils with GM-CSF. These results show that a single lymphokine (GM-CSF) induces sequential changes in neutrophil f-Met-Leu-Phe receptor number and affinity that may enhance different physiologic responses.</jats:p
    corecore