1,020 research outputs found

    Numerical Studies of the two-leg Hubbard ladder

    Full text link
    The Hubbard model on a two-leg ladder structure has been studied by a combination of series expansions at T=0 and the density-matrix renormalization group. We report results for the ground state energy E0E_0 and spin-gap Ξ”s\Delta_s at half-filling, as well as dispersion curves for one and two-hole excitations. For small UU both E0E_0 and Ξ”s\Delta_s show a dramatic drop near t/tβŠ₯∼0.5t/t_{\perp}\sim 0.5, which becomes more gradual for larger UU. This represents a crossover from a "band insulator" phase to a strongly correlated spin liquid. The lowest-lying two-hole state rapidly becomes strongly bound as t/tβŠ₯t/t_{\perp} increases, indicating the possibility that phase separation may occur. The various features are collected in a "phase diagram" for the model.Comment: 10 figures, revte

    A simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation

    Full text link
    We present a simple quantum many-body system - a two-dimensional lattice of qubits with a Hamiltonian composed of nearest-neighbor two-body interactions - such that the ground state is a universal resource for quantum computation using single-qubit measurements. This ground state approximates a cluster state that is encoded into a larger number of physical qubits. The Hamiltonian we use is motivated by the projected entangled pair states, which provide a transparent mechanism to produce such approximate encoded cluster states on square or other lattice structures (as well as a variety of other quantum states) as the ground state. We show that the error in this approximation takes the form of independent errors on bonds occurring with a fixed probability. The energy gap of such a system, which in part determines its usefulness for quantum computation, is shown to be independent of the size of the lattice. In addition, we show that the scaling of this energy gap in terms of the coupling constants of the Hamiltonian is directly determined by the lattice geometry. As a result, the approximate encoded cluster state obtained on a hexagonal lattice (a resource that is also universal for quantum computation) can be shown to have a larger energy gap than one on a square lattice with an equivalent Hamiltonian.Comment: 5 pages, 1 figure; v2 has a simplified lattice, an extended analysis of errors, and some additional references; v3 published versio
    • …
    corecore