3,731 research outputs found

    Coherent charge transport through molecular wires: influence of strong Coulomb repulsion

    Full text link
    We derive a master equation for the electron transport through molecular wires in the limit of strong Coulomb repulsion. This approach is applied to two typical situations: First, we study transport through an open conduction channel for which we find that the current exhibits an ohmic-like behaviour. Second, we explore the transport properties of a bridged molecular wire, where the current decays exponentially as a function of the wire length. For both situations, we discuss the differences to the case of non-interacting electrons.Comment: 15 pages, 4 figures, elsart style, accepted at Chem Phy

    Positive pion absorption on 3He using modern trinucleon wave functions

    Get PDF
    We study pion absorption on 3He employing trinucleon wave functions calculated from modern realistic NN interactions (Paris, CD Bonn). Even though the use of the new wave functions leads to a significant improvement over older calculations with regard to both cross section and polarization data, there are hints that polarization data with quasifree kinematics cannot be described by just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure

    Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    Get PDF
    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an expanding source. The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept. 25-29, 200

    Search for long-lived charginos based on a disappearing-track signature using 136 fb⁻Âč of pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for long-lived charginos produced either directly or in the cascade decay of heavy prompt gluino states is presented. The search is based on proton–proton collision data collected at a centre-of-mass energy of s√ = 13 TeV between 2015 and 2018 with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 136 fb−1. Long-lived charginos are characterised by a distinct signature of a short and then disappearing track, and are reconstructed using at least four measurements in the ATLAS pixel detector, with no subsequent measurements in the silicon-microstrip tracking volume nor any associated energy deposits in the calorimeter. The final state is complemented by a large missing transverse-momentum requirement for triggering purposes and at least one high-transverse-momentum jet. No excess above the expected backgrounds is observed. Exclusion limits are set at 95% confidence level on the masses of the chargino and gluino for different chargino lifetimes. Chargino masses up to 660 (210) GeV are excluded in scenarios where the chargino is a pure wino (higgsino). For charginos produced during the cascade decay of a heavy gluino, gluinos with masses below 2.1 TeV are excluded for a chargino mass of 300 GeV and a lifetime of 0.2 ns

    Performance of the ATLAS Level-1 topological trigger in Run 2

    Get PDF
    During LHC Run 2 (2015–2018) the ATLAS Level-1 topological trigger allowed efficient data-taking by the ATLAS experiment at luminosities up to 2.1×1034 cm−2s−1, which exceeds the design value by a factor of two. The system was installed in 2016 and operated in 2017 and 2018. It uses Field Programmable Gate Array processors to select interesting events by placing kinematic and angular requirements on electromagnetic clusters, jets, τ-leptons, muons and the missing transverse energy. It allowed to significantly improve the background event rejection and signal event acceptance, in particular for Higgs and B-physics processes

    Measurement of the c-jet mistagging efficiency in tt¯ events using pp collision data at s√=13 TeV collected with the ATLAS detector

    Get PDF
    A technique is presented to measure the efficiency with which c-jets are mistagged as b-jets (mistagging efficiency) using tt¯ events, where one of the W bosons decays into an electron or muon and a neutrino and the other decays into a quark–antiquark pair. The measurement utilises the relatively large and known W→cs branching ratio, which allows a measurement to be made in an inclusive c-jet sample. The data sample used was collected by the ATLAS detector at s√=13 TeV and corresponds to an integrated luminosity of 139 fb−1. Events are reconstructed using a kinematic likelihood technique which selects the mapping between jets and tt¯ decay products that yields the highest likelihood value. The distribution of the b-tagging discriminant for jets from the hadronic W decays in data is compared with that in simulation to extract the mistagging efficiency as a function of jet transverse momentum. The total uncertainties are in the range 3–17%. The measurements generally agree with those in simulation but there are some differences in the region corresponding to the most stringent b-jet tagging requirement

    Measurement of the energy response of the ATLAS~calorimeter to charged pions from W± → τ ± (→ π ± Îœ τ )Îœ τ events in Run 2 data

    Get PDF
    The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range 10<pT<300 GeV. The measurement is performed using 139 fb−1 of LHC proton–proton collision data at s√=13 TeV taken in Run 2 by the ATLAS detector. Charged pions originating from τ-lepton decays are used to provide a sample of high-pT isolated particles, where the composition is known, to test an energy regime that has not previously been probed by in situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by ∌2% across a large part of the pT spectrum in the central region and underestimated by ∌4% in the endcaps in the ATLAS simulation. The uncertainties in the measurements are â‰Č1% for 15<pT<185 GeV in the central region. To investigate the source of the discrepancies, the width of the distribution of the ratio of calorimeter energy to track momentum, the energies per layer and response in the hadronic calorimeter are also compared between data and simulation

    Search for flavour-changing neutral-current interactions of a top quark and a gluon in pp collisions at √s=13  TeV with the ATLAS detector

    Get PDF
    A search is presented for the production of a single top quark via left-handed flavour-changing neutral-current (FCNC) interactions of a top quark, a gluon and an up or charm quark. Two production processes are considered: u+g→t and c+g→t. The analysis is based on proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. The data set corresponds to an integrated luminosity of 139 fb−1. Events with exactly one electron or muon, exactly one b-tagged jet and missing transverse momentum are selected, resembling the decay products of a singly produced top quark. Neural networks based on kinematic variables differentiate between events from the two signal processes and events from background processes. The measured data are consistent with the background-only hypothesis, and limits are set on the production cross-sections of the signal processes: σ(u+g→t)×B(t→Wb)×B(W→ℓΜ)<3.0pb and σ(c+g→t)×B(t→Wb)×B(W→ℓΜ)<4.7pb at the 95% confidence level, with B(W→ℓΜ)=0.325 being the sum of branching ratios of all three leptonic decay modes of the W boson. Based on the framework of an effective field theory, the cross-section limits are translated into limits on the strengths of the tug and tcg couplings occurring in the theory: |CutuG|/Λ2<0.057TeV−2 and |CctuG|/Λ2<0.14TeV−2. These bounds correspond to limits on the branching ratios of FCNC-induced top-quark decays: B(t→u+g)<0.61×10−4 and B(t→c+g)<3.7×10−4

    AtlFast3: the next generation of fast simulation in ATLAS

    Get PDF
    The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes
    • 

    corecore