8,156 research outputs found
Nanoscale Suppression of Magnetization at Atomically Assembled Manganite Interfaces
Using polarized X-rays, we compare the electronic and magnetic properties of
a La(2/3)Sr(1/3)MnO(3)(LSMO)/SrTiO(3)(STO) and a modified
LSMO/LaMnO(3)(LMO)/STO interface. Using the technique of X-ray resonant
magnetic scattering (XRMS), we can probe the interfaces of complicated layered
structures and quantitatively model depth-dependent magnetic profiles as a
function of distance from the interface. Comparisons of the average electronic
and magnetic properties at the interface are made independently using X-ray
absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The
XAS and the XMCD demonstrate that the electronic and magnetic structure of the
LMO layer at the modified interface is qualitatively equivalent to the
underlying LSMO film. From the temperature dependence of the XMCD, it is found
that the near surface magnetization for both interfaces falls off faster than
the bulk. For all temperatures in the range of 50K - 300K, the magnetic
profiles for both systems always show a ferromagnetic component at the
interface with a significantly suppressed magnetization that evolves to the
bulk value over a length scale of ~1.6 - 2.4 nm. The LSMO/LMO/STO interface
shows a larger ferromagnetic (FM) moment than the LSMO/STO interface, however
the difference is only substantial at low temperature.Comment: 4 pages, 4 figure
Interface hole-doping in cuprate-titanate superlattices
The electronic structure of interfaces between YBaCuO and
SrTiO is studied using local spin density approximation (LSDA) with
intra-atomic Coulomb repulsion (LSDA+U). We find a metallic state in
cuprate/titanate heterostructures with the hole carriers concentrated
substantially in the CuO-layers and in the first interface TiO and SrO
planes. This effective interface doping appears due to the polarity of
interfaces, caused by the first incomplete copper oxide unit cell.
Interface-induced high pre-doping of CuO-layers is a key mechanism
controlling the superconducting properties in engineered field-effect devices
realized on the basis of cuprate/titanate superlattices.Comment: 5 pages, 5 figure
Nonequilibrium dynamical mean-field calculations based on the non-crossing approximation and its generalizations
We solve the impurity problem which arises within nonequilibrium dynamical
mean-field theory for the Hubbard model by means of a self-consistent
perturbation expansion around the atomic limit. While the lowest order, known
as the non-crossing approximation (NCA), is reliable only when the interaction
U is much larger than the bandwidth, low-order corrections to the NCA turn out
to be sufficient to reproduce numerically exact Monte Carlo results in a wide
parameter range that covers the insulating phase and the metal-insulator
crossover regime at not too low temperatures. As an application of the
perturbative strong-coupling impurity solver we investigate the response of the
double occupancy in the Mott insulating phase of the Hubbard model to a
dynamical change of the interaction or the hopping, a technique which has been
used as a probe of the Mott insulating state in ultracold fermionic gases.Comment: 14 pages, 9 figure
Suppressed Magnetization at the Surfaces and Interfaces of Ferromagnetic Metallic Manganites
What happens to ferromagnetism at the surfaces and interfaces of manganites?
With the competition between charge, spin, and orbital degrees of freedom, it
is not surprising that the surface behavior may be profoundly different than
that of the bulk. Using a powerful combination of two surface probes, tunneling
and polarized x-ray interactions, this paper reviews our work on the nature of
the electronic and magnetic states at manganite surfaces and interfaces. The
general observation is that ferromagnetism is not the lowest energy state at
the surface or interface, which results in a suppression or even loss of
ferromagnetic order at the surface. Two cases will be discussed ranging from
the surface of the quasi-2D bilayer manganite
(LaSrMnO) to the 3D Perovskite
(LaSrMnO)/SrTiO interface. For the bilayer manganite,
that is, ferromagnetic and conducting in the bulk, these probes present clear
evidence for an intrinsic insulating non-ferromagnetic surface layer atop
adjacent subsurface layers that display the full bulk magnetization. This
abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer
coupling native to these quasi-two-dimensional materials. This is in marked
contrast to the non-layered manganite system
(LaSrMnO/SrTiO), whose magnetization near the interface
is less than half the bulk value at low temperatures and decreases with
increasing temperature at a faster rate than the bulk.Comment: 15 pages, 13 figure
Detector-Agnostic Phase-Space Distributions
The representation of quantum states via phase-space functions constitutes an
intuitive technique to characterize light. However, the reconstruction of such
distributions is challenging as it demands specific types of detectors and
detailed models thereof to account for their particular properties and
imperfections. To overcome these obstacles, we derive and implement a
measurement scheme that enables a reconstruction of phase-space distributions
for arbitrary states whose functionality does not depend on the knowledge of
the detectors, thus defining the notion of detector-agnostic phase-space
distributions. Our theory presents a generalization of well-known phase-space
quasiprobability distributions, such as the Wigner function. We implement our
measurement protocol, using state-of-the-art transition-edge sensors without
performing a detector characterization. Based on our approach, we reveal the
characteristic features of heralded single- and two-photon states in phase
space and certify their nonclassicality with high statistical significance
Anomalous superconducting state gap size versus Tc behavior in underdoped Bi_2Sr_2Ca_1-xDy_xCu_2O_8+d
We report angle-resolved photoemission spectroscopy measurements of the
excitation gap in underdoped superconducting thin films of
Bi_2Sr_2Ca_{1-x}Dy_xCu_2O_{8+d}. As Tc is reduced by a factor of 2 by
underdoping, the superconducting state gap \Delta does not fall proportionally,
but instead stays constant or increases slightly, in violation of the BCS
mean-field theory result. The different doping dependences of \Delta and kT_c
indicate that they represent different energy scales. The measurements also
show that \Delta is highly anisotropic and consistent with a d_{x^2-y^2} order
parameter, as in previous studies of samples with higher dopings. However, in
these underdoped samples, the anisotropic gap persists well above T_c. The
existence of a normal state gap is related to the failure of \Delta to scale
with T_c in theoretical models that predict pairing without phase coherence
above T_c.Comment: 10 pages, 4 postscript figures, revtex forma
Direct observation of non-local effects in a superconductor
We have used the technique of low energy muon spin rotation to measure the
local magnetic field profile B(z) beneath the surface of a lead film maintained
in the Meissner state (z depth from the surface, z <= 200 nm). The data
unambiguously show that B(z) clearly deviates from an exponential law and
represent the first direct, model independent proof for a non-local response in
a superconductor.Comment: 5 pages, 3 figure
Variational quantum Monte Carlo calculations for solid surfaces
Quantum Monte Carlo methods have proven to predict atomic and bulk properties
of light and non-light elements with high accuracy. Here we report on the first
variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking
the boundary condition for the simulation from a finite layer geometry, the
Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved
form and evaluated with a two-dimensional Ewald summation technique. The exact
cancellation of all Jellium contributions to the Hamiltonian is ensured. The
many-body trial wave function consists of a Slater determinant with
parameterized localized orbitals and a Jastrow factor with a common two-body
term plus a new confinement term representing further variational freedom to
take into account the existence of the surface. We present results for the
ideal (110) surface of Galliumarsenide for different system sizes. With the
optimized trial wave function, we determine some properties related to a solid
surface to illustrate that VMC techniques provide standard results under full
inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style,
submitted to Phys. Rev.
- …