8,156 research outputs found

    Nanoscale Suppression of Magnetization at Atomically Assembled Manganite Interfaces

    Full text link
    Using polarized X-rays, we compare the electronic and magnetic properties of a La(2/3)Sr(1/3)MnO(3)(LSMO)/SrTiO(3)(STO) and a modified LSMO/LaMnO(3)(LMO)/STO interface. Using the technique of X-ray resonant magnetic scattering (XRMS), we can probe the interfaces of complicated layered structures and quantitatively model depth-dependent magnetic profiles as a function of distance from the interface. Comparisons of the average electronic and magnetic properties at the interface are made independently using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The XAS and the XMCD demonstrate that the electronic and magnetic structure of the LMO layer at the modified interface is qualitatively equivalent to the underlying LSMO film. From the temperature dependence of the XMCD, it is found that the near surface magnetization for both interfaces falls off faster than the bulk. For all temperatures in the range of 50K - 300K, the magnetic profiles for both systems always show a ferromagnetic component at the interface with a significantly suppressed magnetization that evolves to the bulk value over a length scale of ~1.6 - 2.4 nm. The LSMO/LMO/STO interface shows a larger ferromagnetic (FM) moment than the LSMO/STO interface, however the difference is only substantial at low temperature.Comment: 4 pages, 4 figure

    Interface hole-doping in cuprate-titanate superlattices

    Full text link
    The electronic structure of interfaces between YBa2_2Cu3_3O6_6 and SrTiO3_3 is studied using local spin density approximation (LSDA) with intra-atomic Coulomb repulsion (LSDA+U). We find a metallic state in cuprate/titanate heterostructures with the hole carriers concentrated substantially in the CuO2_2-layers and in the first interface TiO2_2 and SrO planes. This effective interface doping appears due to the polarity of interfaces, caused by the first incomplete copper oxide unit cell. Interface-induced high pre-doping of CuO2_2-layers is a key mechanism controlling the superconducting properties in engineered field-effect devices realized on the basis of cuprate/titanate superlattices.Comment: 5 pages, 5 figure

    Nonequilibrium dynamical mean-field calculations based on the non-crossing approximation and its generalizations

    Full text link
    We solve the impurity problem which arises within nonequilibrium dynamical mean-field theory for the Hubbard model by means of a self-consistent perturbation expansion around the atomic limit. While the lowest order, known as the non-crossing approximation (NCA), is reliable only when the interaction U is much larger than the bandwidth, low-order corrections to the NCA turn out to be sufficient to reproduce numerically exact Monte Carlo results in a wide parameter range that covers the insulating phase and the metal-insulator crossover regime at not too low temperatures. As an application of the perturbative strong-coupling impurity solver we investigate the response of the double occupancy in the Mott insulating phase of the Hubbard model to a dynamical change of the interaction or the hopping, a technique which has been used as a probe of the Mott insulating state in ultracold fermionic gases.Comment: 14 pages, 9 figure

    Suppressed Magnetization at the Surfaces and Interfaces of Ferromagnetic Metallic Manganites

    Full text link
    What happens to ferromagnetism at the surfaces and interfaces of manganites? With the competition between charge, spin, and orbital degrees of freedom, it is not surprising that the surface behavior may be profoundly different than that of the bulk. Using a powerful combination of two surface probes, tunneling and polarized x-ray interactions, this paper reviews our work on the nature of the electronic and magnetic states at manganite surfaces and interfaces. The general observation is that ferromagnetism is not the lowest energy state at the surface or interface, which results in a suppression or even loss of ferromagnetic order at the surface. Two cases will be discussed ranging from the surface of the quasi-2D bilayer manganite (La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7) to the 3D Perovskite (La2/3_{2/3}Sr1/3_{1/3}MnO3_3)/SrTiO3_3 interface. For the bilayer manganite, that is, ferromagnetic and conducting in the bulk, these probes present clear evidence for an intrinsic insulating non-ferromagnetic surface layer atop adjacent subsurface layers that display the full bulk magnetization. This abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer coupling native to these quasi-two-dimensional materials. This is in marked contrast to the non-layered manganite system (La2/3_{2/3}Sr1/3_{1/3}MnO3_3/SrTiO3_3), whose magnetization near the interface is less than half the bulk value at low temperatures and decreases with increasing temperature at a faster rate than the bulk.Comment: 15 pages, 13 figure

    Detector-Agnostic Phase-Space Distributions

    Full text link
    The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof to account for their particular properties and imperfections. To overcome these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality with high statistical significance

    Anomalous superconducting state gap size versus Tc behavior in underdoped Bi_2Sr_2Ca_1-xDy_xCu_2O_8+d

    Full text link
    We report angle-resolved photoemission spectroscopy measurements of the excitation gap in underdoped superconducting thin films of Bi_2Sr_2Ca_{1-x}Dy_xCu_2O_{8+d}. As Tc is reduced by a factor of 2 by underdoping, the superconducting state gap \Delta does not fall proportionally, but instead stays constant or increases slightly, in violation of the BCS mean-field theory result. The different doping dependences of \Delta and kT_c indicate that they represent different energy scales. The measurements also show that \Delta is highly anisotropic and consistent with a d_{x^2-y^2} order parameter, as in previous studies of samples with higher dopings. However, in these underdoped samples, the anisotropic gap persists well above T_c. The existence of a normal state gap is related to the failure of \Delta to scale with T_c in theoretical models that predict pairing without phase coherence above T_c.Comment: 10 pages, 4 postscript figures, revtex forma

    Direct observation of non-local effects in a superconductor

    Full text link
    We have used the technique of low energy muon spin rotation to measure the local magnetic field profile B(z) beneath the surface of a lead film maintained in the Meissner state (z depth from the surface, z <= 200 nm). The data unambiguously show that B(z) clearly deviates from an exponential law and represent the first direct, model independent proof for a non-local response in a superconductor.Comment: 5 pages, 3 figure

    Variational quantum Monte Carlo calculations for solid surfaces

    Full text link
    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and non-light elements with high accuracy. Here we report on the first variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all Jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parameterized localized orbitals and a Jastrow factor with a common two-body term plus a new confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of Galliumarsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide standard results under full inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style, submitted to Phys. Rev.
    • …
    corecore